Host-Level Botnet Detection via Internet DNS Traffic Analysis Using Neural Networks

IF 0.5 Q4 TELECOMMUNICATIONS
H. G. Mohan, Jalesh Kumar, M. Nandish
{"title":"Host-Level Botnet Detection via Internet DNS Traffic Analysis Using Neural Networks","authors":"H. G. Mohan,&nbsp;Jalesh Kumar,&nbsp;M. Nandish","doi":"10.1002/itl2.70101","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Botnets remain one of the most significant threats in Internet security, performing large-scale attacks such as distributed denial of service (DDoS), data exfiltration, and financial fraud. Detecting botnet activity at the host level is crucial for early mitigation, particularly by analyzing anomalies in domain name system (DNS) query sequences. This study proposes a deep learning-based DNS sequence analysis that leverages Bidirectional Gated Recurrent Units (BiGRU) to identify deviations in DNS query behavior indicative of botnet activity. The model learns temporal patterns in DNS sequences, distinguishing legitimate traffic from botnet-generated queries by capturing contextual dependencies over time. The proposed approach is trained and evaluated on a UNSW-NB15 dataset. The performance assessment of the proposed model demonstrates its effectiveness in detecting botnets with an accuracy of 99.22%. The comparative analysis with the existing approaches highlights the improvements in detection accuracy with a low misclassification rate.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Botnets remain one of the most significant threats in Internet security, performing large-scale attacks such as distributed denial of service (DDoS), data exfiltration, and financial fraud. Detecting botnet activity at the host level is crucial for early mitigation, particularly by analyzing anomalies in domain name system (DNS) query sequences. This study proposes a deep learning-based DNS sequence analysis that leverages Bidirectional Gated Recurrent Units (BiGRU) to identify deviations in DNS query behavior indicative of botnet activity. The model learns temporal patterns in DNS sequences, distinguishing legitimate traffic from botnet-generated queries by capturing contextual dependencies over time. The proposed approach is trained and evaluated on a UNSW-NB15 dataset. The performance assessment of the proposed model demonstrates its effectiveness in detecting botnets with an accuracy of 99.22%. The comparative analysis with the existing approaches highlights the improvements in detection accuracy with a low misclassification rate.

利用神经网络进行互联网DNS流量分析的主机级僵尸网络检测
僵尸网络仍然是互联网安全中最重要的威胁之一,执行大规模攻击,如分布式拒绝服务(DDoS)、数据泄露和金融欺诈。在主机层面检测僵尸网络活动对于早期缓解至关重要,特别是通过分析域名系统(DNS)查询序列中的异常情况。本研究提出了一种基于深度学习的DNS序列分析,该分析利用双向门控循环单元(BiGRU)来识别指示僵尸网络活动的DNS查询行为中的偏差。该模型学习DNS序列中的时间模式,通过捕获上下文依赖关系来区分合法流量和僵尸网络生成的查询。所提出的方法在UNSW-NB15数据集上进行了训练和评估。对该模型的性能评估表明,该模型能够有效地检测僵尸网络,准确率达到99.22%。与现有方法的对比分析表明,该方法在低误分类率的情况下提高了检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信