Sanja Grđan, Sam Dupont, Luka Glamuzina, Ana Bratoš Cetinić
{"title":"When Time Reveals the Cost: Effects of Long-Term Exposure to Low pH on a Predatory Gastropod","authors":"Sanja Grđan, Sam Dupont, Luka Glamuzina, Ana Bratoš Cetinić","doi":"10.1111/maec.70039","DOIUrl":null,"url":null,"abstract":"<p>Ocean acidification, a direct consequence of anthropogenic carbon dioxide emissions, is among the major challenges for marine organisms. While an increased body of evidence is documenting the negative effects of ocean acidification, most of these studies are still based on short-term exposure. Long-term experiments, studying multiple traits simultaneously, and accounting for short-term local pH variability in the species' habitat are needed. This study investigated the impact of a 310-day exposure to low pH on the banded-dye murex, <i>Hexaplex trunculus</i> (Linnaeus, 1758), a predatory Mediterranean gastropod. Temperature strongly influences the behavior and activity of the banded-dye murex, so we allowed it to vary naturally in this experiment. Our results showed that the net calcification rate was negatively affected by low pH throughout the duration of the experiment. While the banded-dye murexes were able to maintain their total body weight at the beginning of the experiment, it decreased under chronic exposure to low pH. Soft tissue body weight remained unaffected for more than 200 days, followed by a pronounced decrease when exposed to lower pH. No sex-specific differences in response to low pH were observed, but females generally exhibited higher rates of calcification and growth during the winter period, likely due to energy allocation strategies associated with the reproductive cycle. These results suggest that while the banded-dye murex can temporarily reallocate energy to maintain essential physiological functions under low pH, this capacity diminishes over time, revealing physiological limits to long-term stress tolerance. This finding highlights the importance of incorporating long-term, multi-trait experiments in ocean acidification research to better predict species vulnerability, ecosystem-level impacts, and the resilience of coastal marine communities under future climate change scenarios.</p>","PeriodicalId":49883,"journal":{"name":"Marine Ecology-An Evolutionary Perspective","volume":"46 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maec.70039","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Ecology-An Evolutionary Perspective","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maec.70039","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean acidification, a direct consequence of anthropogenic carbon dioxide emissions, is among the major challenges for marine organisms. While an increased body of evidence is documenting the negative effects of ocean acidification, most of these studies are still based on short-term exposure. Long-term experiments, studying multiple traits simultaneously, and accounting for short-term local pH variability in the species' habitat are needed. This study investigated the impact of a 310-day exposure to low pH on the banded-dye murex, Hexaplex trunculus (Linnaeus, 1758), a predatory Mediterranean gastropod. Temperature strongly influences the behavior and activity of the banded-dye murex, so we allowed it to vary naturally in this experiment. Our results showed that the net calcification rate was negatively affected by low pH throughout the duration of the experiment. While the banded-dye murexes were able to maintain their total body weight at the beginning of the experiment, it decreased under chronic exposure to low pH. Soft tissue body weight remained unaffected for more than 200 days, followed by a pronounced decrease when exposed to lower pH. No sex-specific differences in response to low pH were observed, but females generally exhibited higher rates of calcification and growth during the winter period, likely due to energy allocation strategies associated with the reproductive cycle. These results suggest that while the banded-dye murex can temporarily reallocate energy to maintain essential physiological functions under low pH, this capacity diminishes over time, revealing physiological limits to long-term stress tolerance. This finding highlights the importance of incorporating long-term, multi-trait experiments in ocean acidification research to better predict species vulnerability, ecosystem-level impacts, and the resilience of coastal marine communities under future climate change scenarios.
期刊介绍:
Marine Ecology publishes original contributions on the structure and dynamics of marine benthic and pelagic ecosystems, communities and populations, and on the critical links between ecology and the evolution of marine organisms.
The journal prioritizes contributions elucidating fundamental aspects of species interaction and adaptation to the environment through integration of information from various organizational levels (molecules to ecosystems) and different disciplines (molecular biology, genetics, biochemistry, physiology, marine biology, natural history, geography, oceanography, palaeontology and modelling) as viewed from an ecological perspective. The journal also focuses on population genetic processes, evolution of life histories, morphological traits and behaviour, historical ecology and biogeography, macro-ecology and seascape ecology, palaeo-ecological reconstruction, and ecological changes due to introduction of new biota, human pressure or environmental change.
Most applied marine science, including fisheries biology, aquaculture, natural-products chemistry, toxicology, and local pollution studies lie outside the scope of the journal. Papers should address ecological questions that would be of interest to a worldwide readership of ecologists; papers of mostly local interest, including descriptions of flora and fauna, taxonomic descriptions, and range extensions will not be considered.