Contact-Based Digital Twins Modeling for Reinforcement Learning of Robotic Disassembly Operations

M. Qu;D. T. Pham;F. Lan;Z. Wu;Y. Zang;Y. Zhang;Y. Wang
{"title":"Contact-Based Digital Twins Modeling for Reinforcement Learning of Robotic Disassembly Operations","authors":"M. Qu;D. T. Pham;F. Lan;Z. Wu;Y. Zang;Y. Zhang;Y. Wang","doi":"10.1109/TICPS.2025.3589351","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) holds great potential for robotic skill acquisition, but its practical deployment in industrial disassembly tasks is challenged by low sample efficiency and safety concerns in contact-intensive environments. This article presents a cyber-physical approach that enhances RL through simulation-to-reality (sim-to-real) skill transfer using a Digital Twin (DT). The DT models the physical environment and is calibrated via the Bees Algorithm, a metaheuristic optimisation method, to reduce the reality gap by minimising discrepancies between simulated and real-world responses. That enables more accurate simulation of contact dynamics without requiring manual parameter tuning or expert modelling. The method is validated on a representative task: removing a bolt from a door-chain groove, simulating the challenges of force-sensitive disassembly operations. Results demonstrate that the DT-assisted sim-to-real transfer improves learning efficiency, offering a scalable framework for deploying RL in cyber-physical systems for intelligent disassembly and circular manufacturing.","PeriodicalId":100640,"journal":{"name":"IEEE Transactions on Industrial Cyber-Physical Systems","volume":"3 ","pages":"497-506"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11080391/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforcement learning (RL) holds great potential for robotic skill acquisition, but its practical deployment in industrial disassembly tasks is challenged by low sample efficiency and safety concerns in contact-intensive environments. This article presents a cyber-physical approach that enhances RL through simulation-to-reality (sim-to-real) skill transfer using a Digital Twin (DT). The DT models the physical environment and is calibrated via the Bees Algorithm, a metaheuristic optimisation method, to reduce the reality gap by minimising discrepancies between simulated and real-world responses. That enables more accurate simulation of contact dynamics without requiring manual parameter tuning or expert modelling. The method is validated on a representative task: removing a bolt from a door-chain groove, simulating the challenges of force-sensitive disassembly operations. Results demonstrate that the DT-assisted sim-to-real transfer improves learning efficiency, offering a scalable framework for deploying RL in cyber-physical systems for intelligent disassembly and circular manufacturing.
基于接触的数字孪生模型用于机器人拆卸操作的强化学习
强化学习(RL)在机器人技能获取方面具有巨大潜力,但其在工业拆卸任务中的实际部署受到低样本效率和接触密集型环境中安全问题的挑战。本文提出了一种网络物理方法,通过使用数字孪生(DT)通过模拟到现实(模拟到真实)技能转移来增强强化学习。DT模拟物理环境,并通过蜜蜂算法(一种元启发式优化方法)进行校准,通过最小化模拟和现实世界反应之间的差异来减少现实差距。这样可以更准确地模拟接触动力学,而无需手动参数调整或专家建模。该方法在一个具有代表性的任务中得到验证:从门链槽中拆卸螺栓,模拟力敏感拆卸操作的挑战。结果表明,dt辅助的模拟到真实的迁移提高了学习效率,为在网络物理系统中部署强化学习提供了一个可扩展的框架,用于智能拆卸和循环制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信