Data-driven enhancement of the Hastings–Powell model using sparse identification algorithm

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nitu Kumari, Anurag Singh
{"title":"Data-driven enhancement of the Hastings–Powell model using sparse identification algorithm","authors":"Nitu Kumari,&nbsp;Anurag Singh","doi":"10.1016/j.jocs.2025.102682","DOIUrl":null,"url":null,"abstract":"<div><div>A significant challenge in various fields of science and engineering is extracting governing equations from data. Prey-predator models are particularly complex due to their nonlinear behavior, making traditional analytical methods insufficient for accurately capturing their dynamics. In this study, we introduce a data-driven approach to model the intricate dynamics of Hastings–Powell model solely from time series data. This article explores the application of the sparse identification of nonlinear dynamics (SINDy) and its extension, the SINDy-PI (parallel, implicit) method, in a model representing a chaotic food chain. The main goal is to determine the governing equations that describe the chaotic dynamics of the prey-predator populations. Hence, this study uses the parameters wherein the dynamics exhibit chaotic behavior. The method of SINDy was developed with the aim of identifying governing equations of nonlinear dynamical systems. In both methods, a library of potential terms are created and then a regression problem is solved. We have employed both methods as our model incorporates not only nonlinear terms but also rational terms. Our results shows that SINDy method is unable to find the exact form of governing equations but SINDy-PI method has the capability to accurately capture the authentic structure of the governing equations. In addition, we applied model selection techniques to identify the most parsimonious model possible. Through the application of SINDy and SINDy-PI, this research contributes to the advancement of data-centric approaches in ecological modeling, offering insights into the intricate dynamics of multi-species interactions within ecosystems. Further, for this study to be more realistic, utilizing real-world data from three-species would have been ideal. However, due to non-availability of three species real data, simulated data set has been used for validation purpose.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"91 ","pages":"Article 102682"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001590","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A significant challenge in various fields of science and engineering is extracting governing equations from data. Prey-predator models are particularly complex due to their nonlinear behavior, making traditional analytical methods insufficient for accurately capturing their dynamics. In this study, we introduce a data-driven approach to model the intricate dynamics of Hastings–Powell model solely from time series data. This article explores the application of the sparse identification of nonlinear dynamics (SINDy) and its extension, the SINDy-PI (parallel, implicit) method, in a model representing a chaotic food chain. The main goal is to determine the governing equations that describe the chaotic dynamics of the prey-predator populations. Hence, this study uses the parameters wherein the dynamics exhibit chaotic behavior. The method of SINDy was developed with the aim of identifying governing equations of nonlinear dynamical systems. In both methods, a library of potential terms are created and then a regression problem is solved. We have employed both methods as our model incorporates not only nonlinear terms but also rational terms. Our results shows that SINDy method is unable to find the exact form of governing equations but SINDy-PI method has the capability to accurately capture the authentic structure of the governing equations. In addition, we applied model selection techniques to identify the most parsimonious model possible. Through the application of SINDy and SINDy-PI, this research contributes to the advancement of data-centric approaches in ecological modeling, offering insights into the intricate dynamics of multi-species interactions within ecosystems. Further, for this study to be more realistic, utilizing real-world data from three-species would have been ideal. However, due to non-availability of three species real data, simulated data set has been used for validation purpose.
使用稀疏识别算法的Hastings-Powell模型的数据驱动增强
从数据中提取控制方程是科学和工程各个领域面临的一个重大挑战。由于捕食者-猎物模型的非线性行为,使得传统的分析方法不足以准确捕捉其动态。在本研究中,我们引入了一种数据驱动的方法,仅从时间序列数据来建模Hastings-Powell模型的复杂动态。本文探讨了非线性动力学稀疏辨识(SINDy)及其扩展SINDy- pi(并行,隐式)方法在混沌食物链模型中的应用。主要目标是确定描述猎物-捕食者种群混沌动力学的控制方程。因此,本研究使用了动力学表现出混沌行为的参数。为了辨识非线性动力系统的控制方程,提出了SINDy方法。在这两种方法中,都创建了一个潜在项库,然后解决了回归问题。我们采用了这两种方法,因为我们的模型不仅包含非线性项,而且包含有理项。结果表明,SINDy方法无法找到控制方程的精确形式,而SINDy- pi方法能够准确捕捉控制方程的真实结构。此外,我们应用模型选择技术来识别最简约的模型。通过SINDy和SINDy- pi的应用,本研究促进了以数据为中心的生态建模方法的发展,为生态系统中多物种相互作用的复杂动态提供了见解。此外,为了使这项研究更加现实,利用来自三个物种的真实数据将是理想的。然而,由于无法获得三种真实数据,因此采用模拟数据集进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Science
Journal of Computational Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.50
自引率
3.00%
发文量
227
审稿时长
41 days
期刊介绍: Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory. The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation. This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods. Computational science typically unifies three distinct elements: • Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous); • Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems; • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信