Smooth thin-layer asymptotic expansions for free-surface yield-stress flows

IF 2.8 2区 工程技术 Q2 MECHANICS
Danila Denisenko, Gaël Loïc Richard, Guillaume Chambon
{"title":"Smooth thin-layer asymptotic expansions for free-surface yield-stress flows","authors":"Danila Denisenko,&nbsp;Gaël Loïc Richard,&nbsp;Guillaume Chambon","doi":"10.1016/j.jnnfm.2025.105456","DOIUrl":null,"url":null,"abstract":"<div><div>We derive two asymptotic expansions with a smooth velocity field for free-surface viscoplastic flows down an inclined plane in the shallow-flow approximation. The first expansion is based on the classical Herschel–Bulkley constitutive law by using asymptotic matching at the interface between the pseudo-plug and the sheared layer. In contrast to previous works, where authors considered only one term in the transition layer, we compute two extra terms to guarantee a smooth transition of the inertial contribution from the sheared layer to the pseudo-plug. However, the terms associated to the transition layer are solutions of nonintegrable equations, thus preventing the potential use of this expansion for deriving a shallow-flow model. The second asymptotic expansion is based on an alternative tensorial extension of the Herschel–Bulkley law, for which the alignment between the yield-stress tensor and the strain-rate tensor is relaxed, while the von Mises criterion is kept. In this case, smooth asymptotic expansions of the velocity field are given by fully analytical expressions. Comparison of these two expansions with experiments shows that both give essentially equivalent and relatively good agreement.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"344 ","pages":"Article 105456"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025725000758","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive two asymptotic expansions with a smooth velocity field for free-surface viscoplastic flows down an inclined plane in the shallow-flow approximation. The first expansion is based on the classical Herschel–Bulkley constitutive law by using asymptotic matching at the interface between the pseudo-plug and the sheared layer. In contrast to previous works, where authors considered only one term in the transition layer, we compute two extra terms to guarantee a smooth transition of the inertial contribution from the sheared layer to the pseudo-plug. However, the terms associated to the transition layer are solutions of nonintegrable equations, thus preventing the potential use of this expansion for deriving a shallow-flow model. The second asymptotic expansion is based on an alternative tensorial extension of the Herschel–Bulkley law, for which the alignment between the yield-stress tensor and the strain-rate tensor is relaxed, while the von Mises criterion is kept. In this case, smooth asymptotic expansions of the velocity field are given by fully analytical expressions. Comparison of these two expansions with experiments shows that both give essentially equivalent and relatively good agreement.
自由表面屈服应力流动的光滑薄层渐近展开式
在浅流近似下,导出沿斜面自由表面粘塑性流动的两个光滑速度场渐近展开式。第一个扩展是基于经典的Herschel-Bulkley本构定律,通过在伪塞和剪切层之间的界面处使用渐近匹配。与以前的工作相反,作者只考虑过渡层中的一个项,我们计算了两个额外的项,以保证从剪切层到伪插头的惯性贡献的平滑过渡。然而,与过渡层相关的项是不可积方程的解,因此阻止了该展开用于推导浅流模型的潜在使用。第二次渐近展开是基于Herschel-Bulkley定律的备选张量扩展,其中屈服应力张量和应变速率张量之间的对齐被放宽,而von Mises准则保持不变。在这种情况下,速度场的光滑渐近展开式由完全解析表达式给出。两种展开式与实验结果的比较表明,两种展开式具有基本等价和较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
19.40%
发文量
109
审稿时长
61 days
期刊介绍: The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest. Subjects considered suitable for the journal include the following (not necessarily in order of importance): Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids, Multiphase flows involving complex fluids, Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena, Novel flow situations that suggest the need for further theoretical study, Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信