Validating an explainable radiomics approach in non-small cell lung cancer combining high energy physics with clinical and biological analyses

IF 2.7 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Mariagrazia Monteleone , Francesca Camagni , Stefano Percio , Letizia Morelli , Guido Baroni , Simone Gennai , Pietro Govoni , Chiara Paganelli
{"title":"Validating an explainable radiomics approach in non-small cell lung cancer combining high energy physics with clinical and biological analyses","authors":"Mariagrazia Monteleone ,&nbsp;Francesca Camagni ,&nbsp;Stefano Percio ,&nbsp;Letizia Morelli ,&nbsp;Guido Baroni ,&nbsp;Simone Gennai ,&nbsp;Pietro Govoni ,&nbsp;Chiara Paganelli","doi":"10.1016/j.ejmp.2025.105054","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study aims at establishing a validation framework for an explainable radiomics-based model, specifically targeting classification of histopathological subtypes in non-small cell lung cancer (NSCLC) patients.</div></div><div><h3>Methods</h3><div>We developed an explainable radiomics pipeline using open-access CT images from the cancer imaging archive (TCIA). Our approach incorporates three key prongs: SHAP-based feature selection for explainability within the radiomics pipeline, a technical validation of the explainable technique using high energy physics (HEP) data, and a biological validation using RNA-sequencing data and clinical observations.</div></div><div><h3>Results</h3><div>Our radiomic model achieved an accuracy of 0.84 in the classification of the histological subtype. The technical validation performed on the HEP domain over 150 numerically equivalent datasets, maintaining consistent sample size and class imbalance, confirmed the reliability of SHAP-based input features. Biological analysis found significant correlations between gene expression and CT-based radiomic features. In particular, gene <em>MUC21</em> achieved the highest correlation with the radiomic feature describing the10th percentile of voxel intensities (r = 0.46, p &lt; 0.05).</div></div><div><h3>Conclusion</h3><div>This study presents a validation framework for explainable CT-based radiomics in lung cancer, combining HEP-driven technical validation with biological validation to enhance interpretability, reliability, and clinical relevance of XAI models.</div></div>","PeriodicalId":56092,"journal":{"name":"Physica Medica-European Journal of Medical Physics","volume":"136 ","pages":"Article 105054"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Medica-European Journal of Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1120179725001644","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study aims at establishing a validation framework for an explainable radiomics-based model, specifically targeting classification of histopathological subtypes in non-small cell lung cancer (NSCLC) patients.

Methods

We developed an explainable radiomics pipeline using open-access CT images from the cancer imaging archive (TCIA). Our approach incorporates three key prongs: SHAP-based feature selection for explainability within the radiomics pipeline, a technical validation of the explainable technique using high energy physics (HEP) data, and a biological validation using RNA-sequencing data and clinical observations.

Results

Our radiomic model achieved an accuracy of 0.84 in the classification of the histological subtype. The technical validation performed on the HEP domain over 150 numerically equivalent datasets, maintaining consistent sample size and class imbalance, confirmed the reliability of SHAP-based input features. Biological analysis found significant correlations between gene expression and CT-based radiomic features. In particular, gene MUC21 achieved the highest correlation with the radiomic feature describing the10th percentile of voxel intensities (r = 0.46, p < 0.05).

Conclusion

This study presents a validation framework for explainable CT-based radiomics in lung cancer, combining HEP-driven technical validation with biological validation to enhance interpretability, reliability, and clinical relevance of XAI models.
验证一种可解释的放射组学方法在非小细胞肺癌结合高能物理与临床和生物学分析
本研究旨在建立一个可解释的基于放射组学的模型的验证框架,专门针对非小细胞肺癌(NSCLC)患者的组织病理学亚型分类。方法我们利用来自癌症影像档案(TCIA)的开放式CT图像建立了一个可解释的放射组学管道。我们的方法包含三个关键部分:基于shap的特征选择,用于放射组学管道中的可解释性,使用高能物理(HEP)数据对可解释性技术进行技术验证,以及使用rna测序数据和临床观察进行生物学验证。结果放射组学模型对组织学亚型的分类准确率为0.84。在超过150个数值等效数据集的HEP域上进行的技术验证,保持了一致的样本量和类不平衡,证实了基于shap的输入特征的可靠性。生物学分析发现基因表达与基于ct的放射学特征之间存在显著相关性。特别是,MUC21基因与描述体素强度第10百分位数的放射学特征的相关性最高(r = 0.46, p <;0.05)。本研究提出了一个可解释的基于ct的肺癌放射组学的验证框架,将hep驱动的技术验证与生物学验证相结合,以提高XAI模型的可解释性、可靠性和临床相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
14.70%
发文量
493
审稿时长
78 days
期刊介绍: Physica Medica, European Journal of Medical Physics, publishing with Elsevier from 2007, provides an international forum for research and reviews on the following main topics: Medical Imaging Radiation Therapy Radiation Protection Measuring Systems and Signal Processing Education and training in Medical Physics Professional issues in Medical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信