On the complexity of p-order cone programs

IF 1.8 2区 数学 Q1 MATHEMATICS
Víctor Blanco , Victor Magron , Miguel Martínez-Antón
{"title":"On the complexity of p-order cone programs","authors":"Víctor Blanco ,&nbsp;Victor Magron ,&nbsp;Miguel Martínez-Antón","doi":"10.1016/j.jco.2025.101979","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript explores novel complexity results for the feasibility problem over <em>p</em>-order cones, extending the foundational work of Porkolab and Khachiyan (1997) <span><span>[30]</span></span>. By leveraging the intrinsic structure of <em>p</em>-order cones, we derive refined complexity bounds that surpass those obtained via standard semidefinite programming reformulations. Our analysis not only improves theoretical bounds but also provides practical insights into the computational efficiency of solving such problems. In addition to establishing complexity results, we derive explicit bounds for solutions when the feasibility problem admits one. For infeasible instances, we analyze their discrepancy quantifying the degree of infeasibility. Finally, we examine specific cases of interest, highlighting scenarios where the geometry of <em>p</em>-order cones or problem structure yields further computational simplifications. These findings contribute to both the theoretical understanding and practical tractability of optimization problems involving <em>p</em>-order cones.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"91 ","pages":"Article 101979"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000573","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript explores novel complexity results for the feasibility problem over p-order cones, extending the foundational work of Porkolab and Khachiyan (1997) [30]. By leveraging the intrinsic structure of p-order cones, we derive refined complexity bounds that surpass those obtained via standard semidefinite programming reformulations. Our analysis not only improves theoretical bounds but also provides practical insights into the computational efficiency of solving such problems. In addition to establishing complexity results, we derive explicit bounds for solutions when the feasibility problem admits one. For infeasible instances, we analyze their discrepancy quantifying the degree of infeasibility. Finally, we examine specific cases of interest, highlighting scenarios where the geometry of p-order cones or problem structure yields further computational simplifications. These findings contribute to both the theoretical understanding and practical tractability of optimization problems involving p-order cones.
论p阶锥规划的复杂性
本文探索了p阶锥可行性问题的新复杂性结果,扩展了Porkolab和Khachiyan(1997)[30]的基础工作。通过利用p阶锥体的内在结构,我们推导出了优于标准半定规划重构所得到的精细复杂度界。我们的分析不仅提高了理论界限,而且为解决这类问题的计算效率提供了实际的见解。除了建立复杂性结果外,我们还导出了当可行性问题允许存在时解的显式界。对于不可行的情况,我们分析了它们的差异,量化了不可行的程度。最后,我们研究了感兴趣的具体案例,强调了p阶锥体几何或问题结构产生进一步计算简化的场景。这些发现有助于对p阶锥优化问题的理论理解和实践可操作性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信