Anh Tung Nguyen , Sribalaji C. Anand , André M.H. Teixeira
{"title":"Security Metrics for Uncertain Interconnected Systems under Stealthy Data Injection Attacks⁎","authors":"Anh Tung Nguyen , Sribalaji C. Anand , André M.H. Teixeira","doi":"10.1016/j.ifacol.2025.07.063","DOIUrl":null,"url":null,"abstract":"<div><div>This paper quantifies the security of uncertain interconnected systems under stealthy data injection attacks. In particular, we consider a large-scale system composed of a certain subsystem interconnected with an uncertain subsystem, where only the input-output channels are accessible. An adversary is assumed to inject false data to maximize the performance loss of the certain subsystem while remaining undetected. By abstracting the uncertain subsystem as a class of admissible systems satisfying an L<sub>2</sub> gain constraint, the worst-case performance loss is obtained as the solution to a convex semi-definite program depending only on the certain subsystem dynamics and such an L<sub>2</sub> gain constraint. This solution is proved to serve as an upper bound for the actual worst-case performance loss when the model of the entire system is fully certain. The results are demonstrated through numerical simulations of the power transmission grid spanning Sweden and Northern Denmark.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"59 4","pages":"Pages 169-174"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896325004094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper quantifies the security of uncertain interconnected systems under stealthy data injection attacks. In particular, we consider a large-scale system composed of a certain subsystem interconnected with an uncertain subsystem, where only the input-output channels are accessible. An adversary is assumed to inject false data to maximize the performance loss of the certain subsystem while remaining undetected. By abstracting the uncertain subsystem as a class of admissible systems satisfying an L2 gain constraint, the worst-case performance loss is obtained as the solution to a convex semi-definite program depending only on the certain subsystem dynamics and such an L2 gain constraint. This solution is proved to serve as an upper bound for the actual worst-case performance loss when the model of the entire system is fully certain. The results are demonstrated through numerical simulations of the power transmission grid spanning Sweden and Northern Denmark.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.