Sebastián Espinel-Ríos , José L. Avalos , Ehecatl Antonio del Rio Chanona , Dongda Zhang
{"title":"Reinforcement learning for efficient and robust multi-setpoint and multi-trajectory tracking in bioprocesses","authors":"Sebastián Espinel-Ríos , José L. Avalos , Ehecatl Antonio del Rio Chanona , Dongda Zhang","doi":"10.1016/j.compchemeng.2025.109297","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and robust bioprocess control is essential for maximizing performance and adaptability in advanced biotechnological systems. In this work, we present a reinforcement-learning framework for multi-setpoint and multi-trajectory tracking. Tracking multiple setpoints and time-varying trajectories in reinforcement learning is challenging due to the complexity of balancing multiple objectives, a difficulty further exacerbated by system uncertainties such as uncertain initial conditions and stochastic dynamics. This challenge is relevant, e.g., in bioprocesses involving microbial consortia, where precise control over population compositions is required. We introduce a novel return function based on multiplicative reciprocal saturation functions, which explicitly couples reward gains to the simultaneous satisfaction of multiple references. Through a case study involving light-mediated cybergenetic growth control in microbial consortia, we demonstrate via computational experiments that our approach achieves faster convergence, improved stability, and superior control compliance compared to conventional quadratic-cost-based return functions. Moreover, our method enables tuning of the saturation function’s parameters, shaping the learning process and policy updates. By incorporating system uncertainties, our framework also demonstrates robustness, a key requirement in industrial bioprocessing. Overall, this work advances reinforcement-learning-based control strategies in bioprocess engineering, with implications in the broader field of process and systems engineering.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"202 ","pages":"Article 109297"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425002996","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and robust bioprocess control is essential for maximizing performance and adaptability in advanced biotechnological systems. In this work, we present a reinforcement-learning framework for multi-setpoint and multi-trajectory tracking. Tracking multiple setpoints and time-varying trajectories in reinforcement learning is challenging due to the complexity of balancing multiple objectives, a difficulty further exacerbated by system uncertainties such as uncertain initial conditions and stochastic dynamics. This challenge is relevant, e.g., in bioprocesses involving microbial consortia, where precise control over population compositions is required. We introduce a novel return function based on multiplicative reciprocal saturation functions, which explicitly couples reward gains to the simultaneous satisfaction of multiple references. Through a case study involving light-mediated cybergenetic growth control in microbial consortia, we demonstrate via computational experiments that our approach achieves faster convergence, improved stability, and superior control compliance compared to conventional quadratic-cost-based return functions. Moreover, our method enables tuning of the saturation function’s parameters, shaping the learning process and policy updates. By incorporating system uncertainties, our framework also demonstrates robustness, a key requirement in industrial bioprocessing. Overall, this work advances reinforcement-learning-based control strategies in bioprocess engineering, with implications in the broader field of process and systems engineering.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.