Operando impedance-based battery cell internal temperature estimation under non-stationarity and non-linearity conditions

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tobias Hackmann , Yunus Emir , Michael A. Danzer
{"title":"Operando impedance-based battery cell internal temperature estimation under non-stationarity and non-linearity conditions","authors":"Tobias Hackmann ,&nbsp;Yunus Emir ,&nbsp;Michael A. Danzer","doi":"10.1016/j.egyai.2025.100569","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical impedance spectroscopy, a method for battery diagnostics, is used to estimate the internal temperature of a lithium-ion battery cell during highly dynamic load profiles. For the first time, a recurrent neural network is trained and evaluated with operando impedance data for temperature estimation. Furthermore, an approach is considered that guides the training process of the neural network by incorporating physical constraints. The model’s development based on an extensive series of measurements with different load profiles, tested under realistic conditions on large-format lithium-ion cells. The estimation accuracy of the data-driven approach is evaluated and compared against model-based methods, including the extended Kalman filter. An impedance correction model is proposed, which leads to a significant enhancement of the model-based estimation. The recurrent neural network under consideration achieves a mean square error of 1.07 <span><math><mrow><mo>°</mo><mi>C</mi></mrow></math></span> for the investigated testing profiles in the temperature range up to 60 <span><math><mrow><mo>°</mo><mi>C</mi></mrow></math></span>.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100569"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825001016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical impedance spectroscopy, a method for battery diagnostics, is used to estimate the internal temperature of a lithium-ion battery cell during highly dynamic load profiles. For the first time, a recurrent neural network is trained and evaluated with operando impedance data for temperature estimation. Furthermore, an approach is considered that guides the training process of the neural network by incorporating physical constraints. The model’s development based on an extensive series of measurements with different load profiles, tested under realistic conditions on large-format lithium-ion cells. The estimation accuracy of the data-driven approach is evaluated and compared against model-based methods, including the extended Kalman filter. An impedance correction model is proposed, which leads to a significant enhancement of the model-based estimation. The recurrent neural network under consideration achieves a mean square error of 1.07 °C for the investigated testing profiles in the temperature range up to 60 °C.

Abstract Image

非平稳非线性条件下基于Operando阻抗的电池芯内部温度估计
电化学阻抗谱是一种用于电池诊断的方法,用于估计锂离子电池在高动态负载情况下的内部温度。本文首次利用操作阻抗数据对递归神经网络进行训练和评估,用于温度估计。此外,还考虑了一种通过结合物理约束来指导神经网络训练过程的方法。该模型的开发基于一系列广泛的测量,具有不同的负载分布,并在大型锂离子电池的实际条件下进行了测试。对数据驱动方法的估计精度进行了评估,并与基于模型的方法(包括扩展卡尔曼滤波)进行了比较。提出了一种阻抗校正模型,使基于模型的估计有了显著的提高。所考虑的递归神经网络在高达60°C的温度范围内对所研究的测试剖面实现了1.07°C的均方误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信