{"title":"Vision transformers for estimating irradiance using data scarce sky images","authors":"David Hamlyn, Sunny Chaudhary, Tasmiat Rahman","doi":"10.1016/j.egyai.2025.100560","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimation of diffuse horizontal irradiance (DHI) is critical for optimising photovoltaic system performance and energy forecasting yet remains challenging in regions lacking comprehensive ground-based instrumentation. Recent advancements using Vision Transformers (ViTs) trained on extensive sky image datasets have shown promise in replacing costly irradiance measurement equipment, but the scarcity of long-term, high-quality sky imagery significantly restricts practical implementation. Addressing this critical gap, this study proposes a novel dual-framework approach designed for data-scarce scenarios. First, calculated atmospheric parameters, including extraterrestrial irradiance and cyclic time encodings, are integrated to represent sky conditions without utilising any instrumentation. Next, a sequential pipeline initially predicts synthetic global horizontal irradiance (GHI) and uses it as a feature, to refine DHI estimation. Finally, a dual-parallel architecture simultaneously processes raw and overlay-enhanced fisheye sky images. Overlays are generated through unsupervised, physics-informed cloud segmentation to highlight dynamic sky features. Empirical validation is performed using data from the Chilbolton Observatory, chosen for its temperate climate and frequent cloud variability. To simulate data-scarce conditions, models are trained on a single month (e.g., January) and evaluated across a temporally disjoint, full-year test set. Under this setup, the sequential and dual-parallel frameworks achieve RMSE values within 2–3 W/m² and 1–6 W/m², respectively, of a state-of-the-art ViT trained on the complete dataset. By combining physics-informed modelling with unsupervised segmentation, the proposed method provides a scalable and cost-effective solution for DHI estimation, advancing solar resource assessment in data-constrained environments.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100560"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate estimation of diffuse horizontal irradiance (DHI) is critical for optimising photovoltaic system performance and energy forecasting yet remains challenging in regions lacking comprehensive ground-based instrumentation. Recent advancements using Vision Transformers (ViTs) trained on extensive sky image datasets have shown promise in replacing costly irradiance measurement equipment, but the scarcity of long-term, high-quality sky imagery significantly restricts practical implementation. Addressing this critical gap, this study proposes a novel dual-framework approach designed for data-scarce scenarios. First, calculated atmospheric parameters, including extraterrestrial irradiance and cyclic time encodings, are integrated to represent sky conditions without utilising any instrumentation. Next, a sequential pipeline initially predicts synthetic global horizontal irradiance (GHI) and uses it as a feature, to refine DHI estimation. Finally, a dual-parallel architecture simultaneously processes raw and overlay-enhanced fisheye sky images. Overlays are generated through unsupervised, physics-informed cloud segmentation to highlight dynamic sky features. Empirical validation is performed using data from the Chilbolton Observatory, chosen for its temperate climate and frequent cloud variability. To simulate data-scarce conditions, models are trained on a single month (e.g., January) and evaluated across a temporally disjoint, full-year test set. Under this setup, the sequential and dual-parallel frameworks achieve RMSE values within 2–3 W/m² and 1–6 W/m², respectively, of a state-of-the-art ViT trained on the complete dataset. By combining physics-informed modelling with unsupervised segmentation, the proposed method provides a scalable and cost-effective solution for DHI estimation, advancing solar resource assessment in data-constrained environments.