Paola C.M. Delgado, Alexander Ganz, Chunshan Lin and Roxane Thériault
{"title":"Constraining the gravitational wave speed in the early Universe via gravitational Cherenkov radiation","authors":"Paola C.M. Delgado, Alexander Ganz, Chunshan Lin and Roxane Thériault","doi":"10.1088/1475-7516/2025/07/088","DOIUrl":null,"url":null,"abstract":"Scalar particles traveling faster than a subluminal gravitational wave generate gravitons via gravitational Cherenkov radiation. In this paper, we investigate graviton production by the primordial plasma within the framework of modified gravity in the early Universe, generating a relic graviton background. We find that for the minimal model, where only the speed of gravitational waves is modified and a standard model plasma minimally couples to gravity, the relic graviton background can be enhanced by several orders of magnitude, but still agrees with the Big Bang Nucleosynthesis (BBN) bound. Moreover, we also find that for Horndeski theories, such as Galileon theory, the relic background produced by the thermalized scalar field can reach significant amplitudes, exceeding the BBN bound for a region of the parameter space. By requiring the relic graviton background to remain consistent with the BBN constraint, we derive limits on the gravitational wave speed at early times in these modified gravity theories.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"62 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/07/088","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Scalar particles traveling faster than a subluminal gravitational wave generate gravitons via gravitational Cherenkov radiation. In this paper, we investigate graviton production by the primordial plasma within the framework of modified gravity in the early Universe, generating a relic graviton background. We find that for the minimal model, where only the speed of gravitational waves is modified and a standard model plasma minimally couples to gravity, the relic graviton background can be enhanced by several orders of magnitude, but still agrees with the Big Bang Nucleosynthesis (BBN) bound. Moreover, we also find that for Horndeski theories, such as Galileon theory, the relic background produced by the thermalized scalar field can reach significant amplitudes, exceeding the BBN bound for a region of the parameter space. By requiring the relic graviton background to remain consistent with the BBN constraint, we derive limits on the gravitational wave speed at early times in these modified gravity theories.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.