Quantum Learning Theory Beyond Batch Binary Classification

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-29 DOI:10.22331/q-2025-07-29-1813
Preetham Mohan, Ambuj Tewari
{"title":"Quantum Learning Theory Beyond Batch Binary Classification","authors":"Preetham Mohan, Ambuj Tewari","doi":"10.22331/q-2025-07-29-1813","DOIUrl":null,"url":null,"abstract":"Arunachalam and de Wolf (2018) [1] showed that the sample complexity of quantum batch learning of boolean functions, in the realizable and agnostic settings, has the $\\textit{same form and order}$ as the corresponding classical sample complexities. In this paper, we extend this, ostensibly surprising, message to batch multiclass learning, online boolean learning, and online multiclass learning. For our online learning results, we first consider an adaptive adversary variant of the classical model of Dawid and Tewari (2022) [2]. Then, we introduce the first (to the best of our knowledge) model of online learning with quantum examples.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"68 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-29-1813","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Arunachalam and de Wolf (2018) [1] showed that the sample complexity of quantum batch learning of boolean functions, in the realizable and agnostic settings, has the $\textit{same form and order}$ as the corresponding classical sample complexities. In this paper, we extend this, ostensibly surprising, message to batch multiclass learning, online boolean learning, and online multiclass learning. For our online learning results, we first consider an adaptive adversary variant of the classical model of Dawid and Tewari (2022) [2]. Then, we introduce the first (to the best of our knowledge) model of online learning with quantum examples.
超越批处理二进制分类的量子学习理论
**am和de Wolf(2018)[1]表明,布尔函数的量子批处理学习的样本复杂度在可实现和不可知性设置下,对应的经典样本复杂度为$\textit{same form and order}$。在本文中,我们将这个看似令人惊讶的消息扩展到批处理多类学习、在线布尔学习和在线多类学习。对于我们的在线学习结果,我们首先考虑Dawid和Tewari(2022)[2]经典模型的自适应对手变体。然后,我们介绍了第一个(据我们所知的最好的)量子例子在线学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信