{"title":"Comparing Xenium 5K and Visium HD data from identical tissue slide at a pathological perspective.","authors":"Mengping Long, Taobo Hu, Weixin Wang, Junshun Gao, Nan Wang, Mats Nilsson","doi":"10.1186/s13046-025-03479-4","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in spatial transcriptomics have been largely triggered by two high-resolution technologies: Visium-HD and Xenium in-situ. While sequencing-based Visium HD features a refined bin size of 2 µm and transcriptome wide coverage, Xenium in-situ is a targeted imaging-based detection technology with sub-micron resolution. Herein we use a publicly available lung dataset which contains Visium-HD and Xenium-5K data generated on identical tissue slides to make a bona-fide technical comparison aligned with thorough pathological annotations. Whilst Visium-HD offers a broader gene coverage for detection and likely detects more tumor subclones, Xenium-5K achieves comparable results when robust clustering algorithms are applied. Importantly, from the pathological point of view, the single-cell segmentation accuracy is essential when analyzing irregularly shaped cells, where Xenium may be in favor. At the opposite side, although Xenium-5K based cell segmentation to delineate immune cells, normal lung, and vasculature at cell resolution is decent, it relies on fluorescent signals for transcript detection, which is challenging in heavily pigmented tissues such as melanoma or dust-laden alveolar macrophages, an application scenario for which Visium HD may stand out. From this perspective, pathological derived factors are the prior consideration for selecting an appropriate ST approach under difference research settings including cancer.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"219"},"PeriodicalIF":12.8000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298044/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03479-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in spatial transcriptomics have been largely triggered by two high-resolution technologies: Visium-HD and Xenium in-situ. While sequencing-based Visium HD features a refined bin size of 2 µm and transcriptome wide coverage, Xenium in-situ is a targeted imaging-based detection technology with sub-micron resolution. Herein we use a publicly available lung dataset which contains Visium-HD and Xenium-5K data generated on identical tissue slides to make a bona-fide technical comparison aligned with thorough pathological annotations. Whilst Visium-HD offers a broader gene coverage for detection and likely detects more tumor subclones, Xenium-5K achieves comparable results when robust clustering algorithms are applied. Importantly, from the pathological point of view, the single-cell segmentation accuracy is essential when analyzing irregularly shaped cells, where Xenium may be in favor. At the opposite side, although Xenium-5K based cell segmentation to delineate immune cells, normal lung, and vasculature at cell resolution is decent, it relies on fluorescent signals for transcript detection, which is challenging in heavily pigmented tissues such as melanoma or dust-laden alveolar macrophages, an application scenario for which Visium HD may stand out. From this perspective, pathological derived factors are the prior consideration for selecting an appropriate ST approach under difference research settings including cancer.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.