Miika Köykkä, Iida Laatikainen-Raussi, Sami Vierola, Neil J Cronin, Benjamin Waller, Tomi Vänttinen
{"title":"Development, validation and test-retest reliability of a load cell-based device for assessment of isometric forearm rotation torque.","authors":"Miika Köykkä, Iida Laatikainen-Raussi, Sami Vierola, Neil J Cronin, Benjamin Waller, Tomi Vänttinen","doi":"10.1088/1361-6579/adf488","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objectives.</i>This study aimed to develop and validate a load cell-based device for measuring isometric forearm rotation torque and to determine its test-retest reliability.<i>Approach.</i>The custom-built device was calibrated using known weights and validated against a high-precision torque transducer. For reliability assessment, 35 physically active participants (20 males, 15 females; age 30 ± 7 years) were tested for isometric forearm pronation and supination strength 5-7 d apart.<i>Main results.</i>The custom device demonstrated excellent validity (intraclass correlation coefficient (ICC), absolute agreement = 1.00;<i>r</i><sup>2</sup>= 1.00,<i>p</i>< 0.001; mean difference = -1.26-1.44%,<i>p</i>< 0.001). Test-retest reliability was excellent for absolute pronation and supination torque (ICC = 0.88-0.97; coefficient of variation percentage (CV%) = 4.1-5.6; minimal detectable change (MDC) at 90% confidence level = 13.1-19.9%), good to excellent for supination:pronation ratios (ICC = 0.60-0.88; CV% = 7.0-8.6; MDC = 0.10-0.13), and fair to good for dominant:non-dominant ratios (ICC = 0.42-0.66; CV% = 6.1-7.6; MDC = 0.07-0.10). Sex significantly influenced absolute torque values, with males demonstrating consistently higher torque, although reliability metrics were similar for both sexes.<i>Significance.</i>The device is valid, and the test is reliable. It is suitable for clinical assessments, rehabilitation monitoring, and performance evaluation, facilitating an improved understanding of factors affecting elbow overloading and injuries. Limb ratio metrics should be interpreted with caution due to their lower reliability.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adf488","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives.This study aimed to develop and validate a load cell-based device for measuring isometric forearm rotation torque and to determine its test-retest reliability.Approach.The custom-built device was calibrated using known weights and validated against a high-precision torque transducer. For reliability assessment, 35 physically active participants (20 males, 15 females; age 30 ± 7 years) were tested for isometric forearm pronation and supination strength 5-7 d apart.Main results.The custom device demonstrated excellent validity (intraclass correlation coefficient (ICC), absolute agreement = 1.00;r2= 1.00,p< 0.001; mean difference = -1.26-1.44%,p< 0.001). Test-retest reliability was excellent for absolute pronation and supination torque (ICC = 0.88-0.97; coefficient of variation percentage (CV%) = 4.1-5.6; minimal detectable change (MDC) at 90% confidence level = 13.1-19.9%), good to excellent for supination:pronation ratios (ICC = 0.60-0.88; CV% = 7.0-8.6; MDC = 0.10-0.13), and fair to good for dominant:non-dominant ratios (ICC = 0.42-0.66; CV% = 6.1-7.6; MDC = 0.07-0.10). Sex significantly influenced absolute torque values, with males demonstrating consistently higher torque, although reliability metrics were similar for both sexes.Significance.The device is valid, and the test is reliable. It is suitable for clinical assessments, rehabilitation monitoring, and performance evaluation, facilitating an improved understanding of factors affecting elbow overloading and injuries. Limb ratio metrics should be interpreted with caution due to their lower reliability.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.