Lin Liu , Linxiao Wang , Yanjun Wang , Ran Zhuang , Yuan Zhang , Junjie Li , Jiangang Xie , Wen Yin
{"title":"The RNA-binding protein HuR regulates microRNA biogenesis via increased drosha expression","authors":"Lin Liu , Linxiao Wang , Yanjun Wang , Ran Zhuang , Yuan Zhang , Junjie Li , Jiangang Xie , Wen Yin","doi":"10.1016/j.yexcr.2025.114686","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The biogenesis of microRNAs (miRNAs) undergoes substantial alterations in response to various stressors. Drosha, a pivotal regulator of miRNA biogenesis, plays a critical role in cellular responses to external stimuli. The RNA-binding protein HuR is upregulated upon cellular stress. However, under severe or prolonged stress conditions, HuR levels may decline, impairing its protective functions.</div></div><div><h3>Methods</h3><div>To investigate the influence of HuR on miRNA expression, miRNA sequencing was employed to profile expression in IEC-6 intestinal epithelial cells following HuR silencing. Additionally, the effect of HuR overexpression on Drosha expression and activity was assessed. Bioinformatics analyses, biochemical assays, and molecular biology techniques were utilized to elucidate the mechanisms by which HuR interacts with <em>Drosha</em> mRNA, modulating both its translation and transcription.</div></div><div><h3>Results</h3><div>HuR silencing resulted in a significant downregulation of nearly all miRNAs, with no observed impact on piRNA biogenesis. Conversely, HuR overexpression led to increased Drosha expression, regulated through HuR's direct binding to the 3′-UTR of <em>Drosha</em> mRNA. Moreover, HuR indirectly promoted Drosha transcription by elevating c-Myc levels. In a mouse model of thoracic trauma, diminished HuR expression in the intestinal epithelium correlated with reduced Drosha levels, impairing miRNA biogenesis and enhancing apoptosis.</div></div><div><h3>Conclusions</h3><div>These findings underscore the essential role of HuR in the regulation of miRNA biogenesis through Drosha, with implications for stress responses and intestinal injury. The HuR-Drosha axis emerges as a promising therapeutic target for modulating miRNA biogenesis.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"451 1","pages":"Article 114686"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725002861","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The biogenesis of microRNAs (miRNAs) undergoes substantial alterations in response to various stressors. Drosha, a pivotal regulator of miRNA biogenesis, plays a critical role in cellular responses to external stimuli. The RNA-binding protein HuR is upregulated upon cellular stress. However, under severe or prolonged stress conditions, HuR levels may decline, impairing its protective functions.
Methods
To investigate the influence of HuR on miRNA expression, miRNA sequencing was employed to profile expression in IEC-6 intestinal epithelial cells following HuR silencing. Additionally, the effect of HuR overexpression on Drosha expression and activity was assessed. Bioinformatics analyses, biochemical assays, and molecular biology techniques were utilized to elucidate the mechanisms by which HuR interacts with Drosha mRNA, modulating both its translation and transcription.
Results
HuR silencing resulted in a significant downregulation of nearly all miRNAs, with no observed impact on piRNA biogenesis. Conversely, HuR overexpression led to increased Drosha expression, regulated through HuR's direct binding to the 3′-UTR of Drosha mRNA. Moreover, HuR indirectly promoted Drosha transcription by elevating c-Myc levels. In a mouse model of thoracic trauma, diminished HuR expression in the intestinal epithelium correlated with reduced Drosha levels, impairing miRNA biogenesis and enhancing apoptosis.
Conclusions
These findings underscore the essential role of HuR in the regulation of miRNA biogenesis through Drosha, with implications for stress responses and intestinal injury. The HuR-Drosha axis emerges as a promising therapeutic target for modulating miRNA biogenesis.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.