Andre Djalalvandi, Keisuke Takeda, Francesca Grespi, Hualin Fan, Tiago Branco Fonseca, Leonardo Nogara, Saman Sharifi, Carlotta Barison, Martina Semenzato, Akiko Omori, Raffaele Cerutti, Davide Steffan, Lorenza Tsansizi, Valeria Balmaceda, Lukas Alan, Camilla Bean, Bert Blaauw, Carlo Viscomi, Luca Scorrano
{"title":"Opantimirs: A class of antagonizing microRNAs that upregulate Opa1 and improve mitochondrial and disuse myopathies.","authors":"Andre Djalalvandi, Keisuke Takeda, Francesca Grespi, Hualin Fan, Tiago Branco Fonseca, Leonardo Nogara, Saman Sharifi, Carlotta Barison, Martina Semenzato, Akiko Omori, Raffaele Cerutti, Davide Steffan, Lorenza Tsansizi, Valeria Balmaceda, Lukas Alan, Camilla Bean, Bert Blaauw, Carlo Viscomi, Luca Scorrano","doi":"10.1016/j.xcrm.2025.102248","DOIUrl":null,"url":null,"abstract":"<p><p>Alterations in mitochondrial ultrastructure and reduced levels of the crista-shaping protein Opa1 are key features of mitochondrial myopathies and aging. We identify and characterize a biological therapy that improves mitochondrial and disuse myopathy models by boosting Opa1 levels. In silico analysis identifies microRNAs (miRNAs) 128-3p and 148/152-3p family as conserved modulators of OPA1 transcription and elevated in various muscle disorders. These miRNAs target the 3' UTR of murine and human OPA1, reducing its mRNA and protein levels, causing mitochondrial fragmentation and crista disorganization. Genetic experiments confirm that their mitochondrial effects rely on 3' UTR binding. In mitochondrial disease patient cells and murine models, elevated OPA1-specific miRNA levels are reduced by antagonistic miRNAs (Opantimirs), which restore mitochondrial ultrastructure, morphology, and function. In vivo, Opantimirs correct mitochondrial ultrastructure and fiber size in muscles of denervated and Cox15-ablated mice, improving strength in the latter. Thus, biopharmacological correction of the mitochondrial ultrastructure can ameliorate mitochondrial myopathies.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102248"},"PeriodicalIF":10.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12432375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102248","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alterations in mitochondrial ultrastructure and reduced levels of the crista-shaping protein Opa1 are key features of mitochondrial myopathies and aging. We identify and characterize a biological therapy that improves mitochondrial and disuse myopathy models by boosting Opa1 levels. In silico analysis identifies microRNAs (miRNAs) 128-3p and 148/152-3p family as conserved modulators of OPA1 transcription and elevated in various muscle disorders. These miRNAs target the 3' UTR of murine and human OPA1, reducing its mRNA and protein levels, causing mitochondrial fragmentation and crista disorganization. Genetic experiments confirm that their mitochondrial effects rely on 3' UTR binding. In mitochondrial disease patient cells and murine models, elevated OPA1-specific miRNA levels are reduced by antagonistic miRNAs (Opantimirs), which restore mitochondrial ultrastructure, morphology, and function. In vivo, Opantimirs correct mitochondrial ultrastructure and fiber size in muscles of denervated and Cox15-ablated mice, improving strength in the latter. Thus, biopharmacological correction of the mitochondrial ultrastructure can ameliorate mitochondrial myopathies.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.