Development and evaluation of an agentic LLM based RAG framework for evidence-based patient education.

IF 4.4 Q1 HEALTH CARE SCIENCES & SERVICES
AlHasan AlSammarraie, Ali Al-Saifi, Hassan Kamhia, Mohamed Aboagla, Mowafa Househ
{"title":"Development and evaluation of an agentic LLM based RAG framework for evidence-based patient education.","authors":"AlHasan AlSammarraie, Ali Al-Saifi, Hassan Kamhia, Mohamed Aboagla, Mowafa Househ","doi":"10.1136/bmjhci-2025-101570","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and evaluate an agentic retrieval augmented generation (ARAG) framework using open-source large language models (LLMs) for generating evidence-based Arabic patient education materials (PEMs) and assess the LLMs capabilities as validation agents tasked with blocking harmful content.</p><p><strong>Methods: </strong>We selected 12 LLMs and applied four experimental setups (base, base+prompt engineering, ARAG, and ARAG+prompt engineering). PEM generation quality was assessed via two-stage evaluation (automated LLM, then expert review) using 5 metrics (accuracy, readability, comprehensiveness, appropriateness and safety) against ground truth. Validation agent (VA) performance was evaluated separately using a harmful/safe PEM dataset, measuring blocking accuracy.</p><p><strong>Results: </strong>ARAG-enabled setups yielded the best generation performance for 10/12 LLMs. Arabic-focused models occupied the top 9 ranks. Expert evaluation ranking mirrored the automated ranking. AceGPT-v2-32B with ARAG and prompt engineering (setup 4) was confirmed highest-performing. VA accuracy correlated strongly with model size; only models ≥27B parameters achieved >0.80 accuracy. Fanar-7B performed well in generation but poorly as a VA.</p><p><strong>Discussion: </strong>Arabic-centred models demonstrated advantages for the Arabic PEM generation task. ARAG enhanced generation quality, although context limits impacted large-context models. The validation task highlighted model size as critical for reliable performance.</p><p><strong>Conclusion: </strong>ARAG noticeably improves Arabic PEM generation, particularly with Arabic-centred models like AceGPT-v2-32B. Larger models appear necessary for reliable harmful content validation. Automated evaluation showed potential for ranking systems, aligning with expert judgement for top performers.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"32 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2025-101570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To develop and evaluate an agentic retrieval augmented generation (ARAG) framework using open-source large language models (LLMs) for generating evidence-based Arabic patient education materials (PEMs) and assess the LLMs capabilities as validation agents tasked with blocking harmful content.

Methods: We selected 12 LLMs and applied four experimental setups (base, base+prompt engineering, ARAG, and ARAG+prompt engineering). PEM generation quality was assessed via two-stage evaluation (automated LLM, then expert review) using 5 metrics (accuracy, readability, comprehensiveness, appropriateness and safety) against ground truth. Validation agent (VA) performance was evaluated separately using a harmful/safe PEM dataset, measuring blocking accuracy.

Results: ARAG-enabled setups yielded the best generation performance for 10/12 LLMs. Arabic-focused models occupied the top 9 ranks. Expert evaluation ranking mirrored the automated ranking. AceGPT-v2-32B with ARAG and prompt engineering (setup 4) was confirmed highest-performing. VA accuracy correlated strongly with model size; only models ≥27B parameters achieved >0.80 accuracy. Fanar-7B performed well in generation but poorly as a VA.

Discussion: Arabic-centred models demonstrated advantages for the Arabic PEM generation task. ARAG enhanced generation quality, although context limits impacted large-context models. The validation task highlighted model size as critical for reliable performance.

Conclusion: ARAG noticeably improves Arabic PEM generation, particularly with Arabic-centred models like AceGPT-v2-32B. Larger models appear necessary for reliable harmful content validation. Automated evaluation showed potential for ranking systems, aligning with expert judgement for top performers.

基于循证患者教育的代理法学硕士RAG框架的开发和评估。
目的:开发和评估使用开源大型语言模型(llm)生成基于证据的阿拉伯患者教育材料(PEMs)的代理检索增强生成(ARAG)框架,并评估llm作为阻止有害内容的验证代理的能力。方法:选取12个llm,采用基础、基础+提示工程、ARAG、ARAG+提示工程4种实验设置。PEM生成质量通过两阶段评估(自动化LLM,然后是专家评审)进行评估,使用5个指标(准确性、可读性、全面性、适当性和安全性)来评估接地事实。使用有害/安全PEM数据集分别评估验证剂(VA)的性能,测量阻塞准确性。结果:启用arag的设置为10/12 llm产生了最佳的生成性能。以阿拉伯语为主的模特占据了前9名。专家评估排名反映了自动排名。采用ARAG和快速工程(安装4)的AceGPT-v2-32B被证实性能最好。VA精度与模型尺寸密切相关;只有参数≥27B的模型精度达到>.80。Fanar-7B在生成中表现良好,但作为va表现不佳。讨论:以阿拉伯语为中心的模型展示了阿拉伯语PEM生成任务的优势。ARAG提高了生成质量,尽管上下文限制影响了大上下文模型。验证任务强调模型大小是可靠性能的关键。结论:ARAG显著改善阿拉伯语PEM生成,特别是以阿拉伯语为中心的模型,如AceGPT-v2-32B。更大的模型对于可靠的有害内容验证似乎是必要的。自动评估显示了排名系统的潜力,与专家对最佳表现的判断保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
4.90%
发文量
40
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信