{"title":"Assessing the Catalytic Potential of Novel ADAP-M (M = Cu, Ag, Au) Catalysts in [3 + 2] Cycloaddition Reactions","authors":"Ali A. Khairbek, Maha I. Al-Zaben, Renjith Thomas","doi":"10.1002/jcc.70194","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigated the catalytic potential of novel alkoxydiaminophosphine-metal (ADAP-M, M = Cu, Ag, Au) complexes in [3 + 2] cycloaddition (32CA) reactions, specifically for synthesizing 1,2,3-triazoles through metal-assisted azide–alkyne cycloaddition (MAAC). Density functional theory (DFT) was used to evaluate the electronic and structural properties of these complexes to determine their catalytic efficiency. The ADAP ligand is crucial for reducing the activation energy and stabilizing intermediates, thereby enhancing catalysis. The study compared mononuclear and binuclear pathways and revealed that ADAP-Cu complexes, especially in binuclear forms, presented the most favorable energy profiles with significant barrier reductions due to cooperative copper interactions. In contrast, ADAP complexes with silver and gold exhibit higher activation energies and lower efficiency. The role of the solvent was also examined, revealing that toluene increases the energy barriers in metal-catalyzed reactions. These findings emphasize the superior catalytic efficiency of copper-based ADAP complexes and the impact of solvent choice on reaction dynamics, offering insights for advanced catalytic system design in organic synthesis.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 20","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70194","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the catalytic potential of novel alkoxydiaminophosphine-metal (ADAP-M, M = Cu, Ag, Au) complexes in [3 + 2] cycloaddition (32CA) reactions, specifically for synthesizing 1,2,3-triazoles through metal-assisted azide–alkyne cycloaddition (MAAC). Density functional theory (DFT) was used to evaluate the electronic and structural properties of these complexes to determine their catalytic efficiency. The ADAP ligand is crucial for reducing the activation energy and stabilizing intermediates, thereby enhancing catalysis. The study compared mononuclear and binuclear pathways and revealed that ADAP-Cu complexes, especially in binuclear forms, presented the most favorable energy profiles with significant barrier reductions due to cooperative copper interactions. In contrast, ADAP complexes with silver and gold exhibit higher activation energies and lower efficiency. The role of the solvent was also examined, revealing that toluene increases the energy barriers in metal-catalyzed reactions. These findings emphasize the superior catalytic efficiency of copper-based ADAP complexes and the impact of solvent choice on reaction dynamics, offering insights for advanced catalytic system design in organic synthesis.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.