Combinatorial Strategy of Modular Metabolic Engineering and Fermentation Optimization Jointly Improved Gibberellic Acid Production in Fusarium fujikuroi
{"title":"Combinatorial Strategy of Modular Metabolic Engineering and Fermentation Optimization Jointly Improved Gibberellic Acid Production in Fusarium fujikuroi","authors":"Chun-Yue Weng, Jia-Yi Han, Zhi-Tao Dong, Zhi-Qiang Liu, Yu-Guo Zheng","doi":"10.1002/biot.70088","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Gibberellic acid 3 (GA<sub>3</sub>), a diterpenoid phytohormone industrially biosynthesized by <i>Fusarium fujikuroi</i>, serves as a pivotal plant growth regulator with extensive agricultural applications. Currently, industrial GA<sub>3</sub> production predominantly relies on prolonged submerged microbial fermentation with <i>F. fujikuroi</i> as the main production strain, valued for its native biosynthetic capacity. Nevertheless, large-scale industrialization of GA<sub>3</sub> remains constrained by low production yields. In this study, a systematic multimodular metabolic engineering framework was implemented to enhance GA₃ biosynthesis in <i>F. fujikuroi</i>. The engineering strategy encompassed four synergistic modules: reinforcement of fatty acid biosynthesis, augmentation of acetyl-CoA metabolic flux, optimization of redox cofactor homeostasis, and overexpression of the positive transcriptional regulator. This integrated approach yielded the engineered strain OE: <i>Lae1-AGP3</i> demonstrating a 2.58 g/L GA₃ titer in shake-flask fermentation. Subsequent bioprocess optimization through exogenous fatty acid supplementation further elevated GA<sub>3</sub> production to 2.86 g/L, representing a 10.9% increase. This study demonstrates the feasibility of coordinated metabolic modifications for improving GA<sub>3</sub> biosynthesis in <i>F. fujikuroi</i>, offering practical insights for overcoming productivity limitations in fungal secondary metabolite fermentation processes.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 7","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.70088","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gibberellic acid 3 (GA3), a diterpenoid phytohormone industrially biosynthesized by Fusarium fujikuroi, serves as a pivotal plant growth regulator with extensive agricultural applications. Currently, industrial GA3 production predominantly relies on prolonged submerged microbial fermentation with F. fujikuroi as the main production strain, valued for its native biosynthetic capacity. Nevertheless, large-scale industrialization of GA3 remains constrained by low production yields. In this study, a systematic multimodular metabolic engineering framework was implemented to enhance GA₃ biosynthesis in F. fujikuroi. The engineering strategy encompassed four synergistic modules: reinforcement of fatty acid biosynthesis, augmentation of acetyl-CoA metabolic flux, optimization of redox cofactor homeostasis, and overexpression of the positive transcriptional regulator. This integrated approach yielded the engineered strain OE: Lae1-AGP3 demonstrating a 2.58 g/L GA₃ titer in shake-flask fermentation. Subsequent bioprocess optimization through exogenous fatty acid supplementation further elevated GA3 production to 2.86 g/L, representing a 10.9% increase. This study demonstrates the feasibility of coordinated metabolic modifications for improving GA3 biosynthesis in F. fujikuroi, offering practical insights for overcoming productivity limitations in fungal secondary metabolite fermentation processes.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.