When Construction Supply Chains Meet 6G: A Deep Neural Network-Based Real-Time Data Transmission Approach

IF 0.5 Q4 TELECOMMUNICATIONS
Zhaoyi Tong, Rong Huang, Haoning Mai
{"title":"When Construction Supply Chains Meet 6G: A Deep Neural Network-Based Real-Time Data Transmission Approach","authors":"Zhaoyi Tong,&nbsp;Rong Huang,&nbsp;Haoning Mai","doi":"10.1002/itl2.70071","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Traditional communication infrastructures often struggle to support the demands of real-time data exchange required for modern construction practices like building information modeling, drone monitoring, sensor networks, and automated equipment, leading to delays, cost overruns, and suboptimal resource allocation. This letter presents a deep neural network-based real-time dynamic selection (DRDS) algorithm for modern construction supply chains that leverages 6G network capabilities for ultrafast data transmission. The approach uses historical project data to train a deep neural network model that dynamically selects optimal priority rules for resource allocation and scheduling based on real-time project status. Experimental results demonstrate that DRDS outperforms existing methods, achieving 95.2% relative optimal solutions for large-scale projects while maintaining solution times under 1.12 s. When deployed on 6G networks, the algorithm achieves 0.23 ms transmission latency, 39.2% bandwidth utilization, and can support 12 580 sensor nodes per km<sup>2</sup>.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional communication infrastructures often struggle to support the demands of real-time data exchange required for modern construction practices like building information modeling, drone monitoring, sensor networks, and automated equipment, leading to delays, cost overruns, and suboptimal resource allocation. This letter presents a deep neural network-based real-time dynamic selection (DRDS) algorithm for modern construction supply chains that leverages 6G network capabilities for ultrafast data transmission. The approach uses historical project data to train a deep neural network model that dynamically selects optimal priority rules for resource allocation and scheduling based on real-time project status. Experimental results demonstrate that DRDS outperforms existing methods, achieving 95.2% relative optimal solutions for large-scale projects while maintaining solution times under 1.12 s. When deployed on 6G networks, the algorithm achieves 0.23 ms transmission latency, 39.2% bandwidth utilization, and can support 12 580 sensor nodes per km2.

当建筑供应链满足6G:基于深度神经网络的实时数据传输方法
传统的通信基础设施通常难以支持现代建筑实践(如建筑信息建模、无人机监控、传感器网络和自动化设备)所需的实时数据交换需求,从而导致延迟、成本超支和资源分配不理想。这封信提出了一种基于深度神经网络的实时动态选择(DRDS)算法,用于现代建筑供应链,该算法利用6G网络能力进行超高速数据传输。该方法利用历史项目数据训练深度神经网络模型,根据实时项目状态动态选择资源分配和调度的最优优先级规则。实验结果表明,DRDS优于现有方法,在求解时间低于1.12 s的情况下,在大型项目中获得95.2%的相对最优解。当部署在6G网络时,该算法的传输延迟为0.23 ms,带宽利用率为39.2%,每平方公里可支持12580个传感器节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信