{"title":"Holocene Precipitation Change Recorded in Stalagmite Carbon Isotopes and Mg/Ca Ratios in the Pacific Coastal Area of Central Japan","authors":"Akira Murata, Taiki Mori, Hirokazu Kato, Fumito Shiraishi, Kenji Kashiwagi, Akihiro Kano","doi":"10.1111/iar.70025","DOIUrl":null,"url":null,"abstract":"<p>Stalagmite is an excellent archive for reconstructing climate conditions in temperate-tropical areas. Our previous study reconstructed Holocene temperature changes at high resolution from a well-dated stalagmite (KA01) in the Kiriana Cave in Mie Prefecture, Japan, but could not extract information related to precipitation change. Here, the δ<sup>13</sup>C and Mg/Ca ratio of KA01 were used to discuss the precipitation variability. These proxies reflect prior calcite precipitation (PCP; calcite precipitation before the water reaches a stalagmite), which can be used to evaluate the precipitation. The δ<sup>13</sup>C-based PCP with higher time resolution indicates a humid interval of 9.8–7.2 ka and dry intervals of 12.3–13.3 and 4.0–2.0 ka. These humid and dry intervals broadly correspond to the warm and cold intervals, respectively, which were identified in our previous study. This correspondence may have resulted from the oceanographic change in the northwest Pacific, which is dominant moisture and heat sources for the study area. The humid-warm conditions during 9.8–7.2 ka were unstable, with short-term dry and cold periods. The dry and cold period around 8 ka may correspond to the global “8.2 ka event”. The cold-dry period of 4.0–2.0 ka corresponds to the late Jomon period when the population in the Japanese Islands declined. The cold-dry climate is suggested as one of the possible causes for the population decline, and may have spread across a wide area of the Japanese islands. Due to global warming, the future climate along the Pacific coastline is expected to resemble the conditions of the warmest interval in the early-middle Holocene. Considering the high precipitation during this interval, future warming will be accompanied by an increase in precipitation. (273 letters).</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"34 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iar.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.70025","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stalagmite is an excellent archive for reconstructing climate conditions in temperate-tropical areas. Our previous study reconstructed Holocene temperature changes at high resolution from a well-dated stalagmite (KA01) in the Kiriana Cave in Mie Prefecture, Japan, but could not extract information related to precipitation change. Here, the δ13C and Mg/Ca ratio of KA01 were used to discuss the precipitation variability. These proxies reflect prior calcite precipitation (PCP; calcite precipitation before the water reaches a stalagmite), which can be used to evaluate the precipitation. The δ13C-based PCP with higher time resolution indicates a humid interval of 9.8–7.2 ka and dry intervals of 12.3–13.3 and 4.0–2.0 ka. These humid and dry intervals broadly correspond to the warm and cold intervals, respectively, which were identified in our previous study. This correspondence may have resulted from the oceanographic change in the northwest Pacific, which is dominant moisture and heat sources for the study area. The humid-warm conditions during 9.8–7.2 ka were unstable, with short-term dry and cold periods. The dry and cold period around 8 ka may correspond to the global “8.2 ka event”. The cold-dry period of 4.0–2.0 ka corresponds to the late Jomon period when the population in the Japanese Islands declined. The cold-dry climate is suggested as one of the possible causes for the population decline, and may have spread across a wide area of the Japanese islands. Due to global warming, the future climate along the Pacific coastline is expected to resemble the conditions of the warmest interval in the early-middle Holocene. Considering the high precipitation during this interval, future warming will be accompanied by an increase in precipitation. (273 letters).
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.