Biodegradable glucosamine-amino acid-based ionic liquids as efficient water-based lubricant additives for green tribological chemistry†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Jing Yang, Xiao Liu, Chongyun Sun, Qiang Chen, Pingxia Guo, Kai Feng, Meirong Cai and Feng Zhou
{"title":"Biodegradable glucosamine-amino acid-based ionic liquids as efficient water-based lubricant additives for green tribological chemistry†","authors":"Jing Yang, Xiao Liu, Chongyun Sun, Qiang Chen, Pingxia Guo, Kai Feng, Meirong Cai and Feng Zhou","doi":"10.1039/D5ME00036J","DOIUrl":null,"url":null,"abstract":"<p >Water-based lubricants demonstrate significant development potential in machining and automotive manufacturing industries owing to their environmental friendliness, safety profile, and ease of cleaning. In this study, two eco-friendly amino acid-based ionic liquids (AAILs), <em>N</em>-ethyl-<small>D</small>-glucamine-2-(<em>N</em>-methyldodecanamido) acetate acid (EDG-LS) and <em>N</em>-octyl-<small>D</small>-glucamine-2-(<em>N</em>-methyldodecanamido) acetate (ODG-LS), were synthesized using 2-(<em>N</em>-methyldodecanamido) acetic acid and glucosamine as raw materials. When AAILs were employed as water-based lubrication additives, the physicochemical characteristics, tribological performances, and lubrication mechanisms of the lubricants were systematically evaluated. The results of the cast iron tests demonstrate that adding just 1 wt% of AAIL additives can significantly reduce the corrosion of water. Moreover, EDG-LS exhibits superior friction reduction (69.9% decrease) and anti-wear properties (91.4% reduction) compared to water. The combined influence of physically adsorbed films and tribochemical reaction layers endows AAILs with outstanding tribological performance. Additionally, two kinds of AAILs exhibit favorable biodegradability, with a biodegradation rate approaching 60%. This research provides theoretical insights for creating eco-friendly, biodegradable, and multifunctional water-based lubricant additives.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 8","pages":" 649-661"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d5me00036j","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Water-based lubricants demonstrate significant development potential in machining and automotive manufacturing industries owing to their environmental friendliness, safety profile, and ease of cleaning. In this study, two eco-friendly amino acid-based ionic liquids (AAILs), N-ethyl-D-glucamine-2-(N-methyldodecanamido) acetate acid (EDG-LS) and N-octyl-D-glucamine-2-(N-methyldodecanamido) acetate (ODG-LS), were synthesized using 2-(N-methyldodecanamido) acetic acid and glucosamine as raw materials. When AAILs were employed as water-based lubrication additives, the physicochemical characteristics, tribological performances, and lubrication mechanisms of the lubricants were systematically evaluated. The results of the cast iron tests demonstrate that adding just 1 wt% of AAIL additives can significantly reduce the corrosion of water. Moreover, EDG-LS exhibits superior friction reduction (69.9% decrease) and anti-wear properties (91.4% reduction) compared to water. The combined influence of physically adsorbed films and tribochemical reaction layers endows AAILs with outstanding tribological performance. Additionally, two kinds of AAILs exhibit favorable biodegradability, with a biodegradation rate approaching 60%. This research provides theoretical insights for creating eco-friendly, biodegradable, and multifunctional water-based lubricant additives.

Abstract Image

可生物降解的氨基葡萄糖-氨基酸基离子液体作为绿色摩擦化学的高效水性润滑剂添加剂
水基润滑油因其环保、安全、易于清洁等特点,在机械加工和汽车制造业中具有巨大的发展潜力。本研究以2-(n -甲基十二氨基)乙酸和氨基葡萄糖为原料,合成了两种环保型氨基酸离子液体n -乙基- d-葡胺-2-(n -甲基十二氨基)乙酸(EDG-LS)和n -辛基- d-葡胺-2-(n -甲基十二氨基)乙酸(ODG-LS)。将AAILs作为水基润滑添加剂,对其物理化学特性、摩擦学性能和润滑机理进行了系统评价。铸铁试验结果表明,添加1wt %的AAIL添加剂可以显著降低水的腐蚀。此外,与水相比,EDG-LS具有更好的摩擦减量(减少69.9%)和抗磨性能(减少91.4%)。物理吸附膜和摩擦化学反应层的共同作用使aail具有优异的摩擦学性能。两种aail均表现出良好的生物降解性,生物降解率均接近60%。本研究为开发环保型、可生物降解型、多功能水性润滑油添加剂提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信