Yuxi Wang;Haochang Jin;Maocheng Cao;Xiong Xiao;Li Wang
{"title":"A Multilayer Residual Dendritic Neural Model for Predicting Stroke Prognosis","authors":"Yuxi Wang;Haochang Jin;Maocheng Cao;Xiong Xiao;Li Wang","doi":"10.1109/ACCESS.2025.3591799","DOIUrl":null,"url":null,"abstract":"Stroke, caused by occlusion or rupture of cerebral blood vessels, is a leading cause of disability and death globally. Accurate stroke prognosis can enhance clinical decisions and rehabilitation strategies. The dendritic neural model (DNM), inspired by biological neurons, shows strong predictive capability, but struggles with real-world small-scale tabular stroke data. Therefore, an improved residual dendritic neural model (RDNM) is proposed. It contains a series of stacked synaptic and dendritic layers to enhance the power. Residual connections are added between layers to address the vanishing gradient problem. Evaluations using one public and two private stroke prognosis datasets demonstrate that RDNM significantly outperforms original DNM and state-of-the-art deep-learning methods, highlighting its potential for clinical applications. Source code is available at <uri>https://github.com/jhc050998/RDNM</uri>.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"130963-130977"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11091294","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11091294/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke, caused by occlusion or rupture of cerebral blood vessels, is a leading cause of disability and death globally. Accurate stroke prognosis can enhance clinical decisions and rehabilitation strategies. The dendritic neural model (DNM), inspired by biological neurons, shows strong predictive capability, but struggles with real-world small-scale tabular stroke data. Therefore, an improved residual dendritic neural model (RDNM) is proposed. It contains a series of stacked synaptic and dendritic layers to enhance the power. Residual connections are added between layers to address the vanishing gradient problem. Evaluations using one public and two private stroke prognosis datasets demonstrate that RDNM significantly outperforms original DNM and state-of-the-art deep-learning methods, highlighting its potential for clinical applications. Source code is available at https://github.com/jhc050998/RDNM.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.