Mohammed Adil Abbas;Aqiel N. Almamori;Ahmed Jumaa Lafta;Asaad H. Sahar
{"title":"Enhanced Spectral Efficiency in RIS-Assisted MIMO Systems Through Joint Precoding and RIS Configuration","authors":"Mohammed Adil Abbas;Aqiel N. Almamori;Ahmed Jumaa Lafta;Asaad H. Sahar","doi":"10.1109/ACCESS.2025.3590964","DOIUrl":null,"url":null,"abstract":"Reconfigurable Intelligent Surfaces (RIS) offer a promising solution to enhance wireless communication performance, particularly for 6G networks. This paper proposes a unified joint optimization framework to enhance spectral efficiency in reconfigurable intelligent surface (RIS)-assisted multiple-input multiple-output (MIMO) systems. Unlike conventional approaches that optimize RIS phase shifts and transmitter precoding separately, our method jointly optimizes both using an iterative strategy. Water-filling is used for power allocation across channel eigenmodes, while manifold optimization ensures efficient phase shift updates under unit-modulus constraints. Extensive simulations under diverse channel conditions reveal a consistent spectral efficiency improvement of up to 39.38%, outperforming across RIS sizes and transmit powers. These results highlight the contribution of combining RIS configuration and transmitter precoding into a coordinated optimization loop, guided by channel eigenmode alignment and practical implementation constraints. The enhanced performance stems from the algorithm’s ability to dynamically coordinate power allocation with channel eigenmode alignment, making it a viable solution for next-generation wireless systems requiring high spectral efficiency.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"130159-130167"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11086580","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11086580/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable Intelligent Surfaces (RIS) offer a promising solution to enhance wireless communication performance, particularly for 6G networks. This paper proposes a unified joint optimization framework to enhance spectral efficiency in reconfigurable intelligent surface (RIS)-assisted multiple-input multiple-output (MIMO) systems. Unlike conventional approaches that optimize RIS phase shifts and transmitter precoding separately, our method jointly optimizes both using an iterative strategy. Water-filling is used for power allocation across channel eigenmodes, while manifold optimization ensures efficient phase shift updates under unit-modulus constraints. Extensive simulations under diverse channel conditions reveal a consistent spectral efficiency improvement of up to 39.38%, outperforming across RIS sizes and transmit powers. These results highlight the contribution of combining RIS configuration and transmitter precoding into a coordinated optimization loop, guided by channel eigenmode alignment and practical implementation constraints. The enhanced performance stems from the algorithm’s ability to dynamically coordinate power allocation with channel eigenmode alignment, making it a viable solution for next-generation wireless systems requiring high spectral efficiency.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.