Deep Temporal and Structural Embeddings for Robust Unsupervised Anomaly Detection in Dynamic Graphs

Samir Abdaljalil;Hasan Kurban;Rachad Atat;Erchin Serpedin;Khalid Qaraqe
{"title":"Deep Temporal and Structural Embeddings for Robust Unsupervised Anomaly Detection in Dynamic Graphs","authors":"Samir Abdaljalil;Hasan Kurban;Rachad Atat;Erchin Serpedin;Khalid Qaraqe","doi":"10.1109/OJCS.2025.3584942","DOIUrl":null,"url":null,"abstract":"Detecting anomalies in dynamic graphs is a complex yet essential task, as existing methods often fail to capture long-term dependencies required for identifying irregularities in evolving networks. We introduce Temporal Structural Graph Anomaly Detection (<sc>T-StructGAD</small>), an unsupervised framework that leverages Graph Convolutional Gated Recurrent Units (<monospace>GConvGRU</monospace>s) and Long Short-Term Memory networks (<monospace>LSTM</monospace>s) to jointly model both structural and temporal dynamics in graph node embeddings. Anomalies are detected using reconstruction errors generated by an AutoEncoder, enabling the framework to robustly uncover deviations across time. Our method successfully captures temporal patterns, making it robust against subtle anomalies and structural changes. Comprehensive evaluations on four real-world datasets demonstrate that <sc>T-StructGAD</small> consistently outperforms 12 state-of-the-art unsupervised anomaly detection models, showcasing its superior ability to detect complex anomalies in evolving graphs. This work advances anomaly detection in dynamic graphs by integrating deep learning techniques to address structural and temporal irregularities in a more effective manner.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1100-1109"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11068181","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11068181/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting anomalies in dynamic graphs is a complex yet essential task, as existing methods often fail to capture long-term dependencies required for identifying irregularities in evolving networks. We introduce Temporal Structural Graph Anomaly Detection (T-StructGAD), an unsupervised framework that leverages Graph Convolutional Gated Recurrent Units (GConvGRUs) and Long Short-Term Memory networks (LSTMs) to jointly model both structural and temporal dynamics in graph node embeddings. Anomalies are detected using reconstruction errors generated by an AutoEncoder, enabling the framework to robustly uncover deviations across time. Our method successfully captures temporal patterns, making it robust against subtle anomalies and structural changes. Comprehensive evaluations on four real-world datasets demonstrate that T-StructGAD consistently outperforms 12 state-of-the-art unsupervised anomaly detection models, showcasing its superior ability to detect complex anomalies in evolving graphs. This work advances anomaly detection in dynamic graphs by integrating deep learning techniques to address structural and temporal irregularities in a more effective manner.
基于深度时间和结构嵌入的动态图鲁棒无监督异常检测
检测动态图中的异常是一项复杂而重要的任务,因为现有的方法通常无法捕获识别不断发展的网络中的不规则性所需的长期依赖关系。我们引入了时间结构图异常检测(T-StructGAD),这是一种无监督框架,它利用图卷积门控循环单元(gconvgru)和长短期记忆网络(LSTMs)来联合建模图节点嵌入中的结构和时间动态。使用自动编码器生成的重建错误检测异常,使框架能够可靠地发现随时间变化的偏差。我们的方法成功地捕获了时间模式,使其对细微的异常和结构变化具有鲁棒性。对四个真实数据集的综合评估表明,T-StructGAD始终优于12个最先进的无监督异常检测模型,展示了其在进化图中检测复杂异常的卓越能力。这项工作通过集成深度学习技术以更有效的方式解决结构和时间不规则性,推进了动态图中的异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信