Dynamic Spectrum Coexistence of NR-V2X and Wi-Fi 6E Using Deep Reinforcement Learning

Kashish D. Shah;Dhaval K. Patel;Brijesh Soni;Siddhartan Govindasamy;Mehul S. Raval;Mukesh Zaveri
{"title":"Dynamic Spectrum Coexistence of NR-V2X and Wi-Fi 6E Using Deep Reinforcement Learning","authors":"Kashish D. Shah;Dhaval K. Patel;Brijesh Soni;Siddhartan Govindasamy;Mehul S. Raval;Mukesh Zaveri","doi":"10.1109/OJCS.2025.3586664","DOIUrl":null,"url":null,"abstract":"The deployment of 5G NR-based Cellular-V2X, i.e., the NR-V2X standard, is a promising solution to meet the increasing demand for vehicular data transmission in the low-frequency spectrum. The high throughput requirement of NR-V2X users can be overcome by extending it to utilize the sub-6GHz unlicensed spectrum, coexisting with Wi-Fi 6E, thus increasing the overall spectrum availability. Most existing works on coexistence rely on rule-based approaches or classical machine learning algorithms. These approaches may fall short in real-time environments where adaptive decision-making is required. In this context, we introduce a novel Deep Reinforcement learning (DRL) based framework for 5G NR-V2X (mode-1 and mode-2) and Wi-Fi 6E coexistence. We propose an algorithm to dynamically adjust the transmission time of the 5G NR-V2X (for mode-1) or Wi-Fi 6E (for mode-2), based on the Wi-Fi and V2X traffic, to maximize the overall throughput of both systems. The proposed algorithm is implemented through extensive simulations using the Network Simulator-3 (ns-3), integrated with a custom Deep Reinforcement Learning (DRL) framework developed using OpenAIGym. This closed-loop integration enables realistic, dynamic interaction between the learning agent and high-fidelity network environments, representing a novel simulation setup for studying NR-V2X and Wi-Fi coexistence. The results show that when employing DRL on NR-V2X and Wi-Fi coexistence, the average data rates for Vehicular User Equipments (VUEs) and Wi-Fi User Equipments (WUEs) improve by <inline-formula><tex-math>$\\sim$</tex-math></inline-formula>24% and 23%, respectively, as compared to the static method; and even higher improvement when compared to the existing RL-based LTE-V2X and Wi-Fi coexistence approach. Additionally, we analyzed the impact of NR-V2X coexistence on the Wi-Fi subsystem under mode-1 and mode-2 communications. Our findings indicate that mode-1 communication demands more spectrum resources than mode-2, leading to a performance compromise for Wi-Fi.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1133-1145"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072315","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072315/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The deployment of 5G NR-based Cellular-V2X, i.e., the NR-V2X standard, is a promising solution to meet the increasing demand for vehicular data transmission in the low-frequency spectrum. The high throughput requirement of NR-V2X users can be overcome by extending it to utilize the sub-6GHz unlicensed spectrum, coexisting with Wi-Fi 6E, thus increasing the overall spectrum availability. Most existing works on coexistence rely on rule-based approaches or classical machine learning algorithms. These approaches may fall short in real-time environments where adaptive decision-making is required. In this context, we introduce a novel Deep Reinforcement learning (DRL) based framework for 5G NR-V2X (mode-1 and mode-2) and Wi-Fi 6E coexistence. We propose an algorithm to dynamically adjust the transmission time of the 5G NR-V2X (for mode-1) or Wi-Fi 6E (for mode-2), based on the Wi-Fi and V2X traffic, to maximize the overall throughput of both systems. The proposed algorithm is implemented through extensive simulations using the Network Simulator-3 (ns-3), integrated with a custom Deep Reinforcement Learning (DRL) framework developed using OpenAIGym. This closed-loop integration enables realistic, dynamic interaction between the learning agent and high-fidelity network environments, representing a novel simulation setup for studying NR-V2X and Wi-Fi coexistence. The results show that when employing DRL on NR-V2X and Wi-Fi coexistence, the average data rates for Vehicular User Equipments (VUEs) and Wi-Fi User Equipments (WUEs) improve by $\sim$24% and 23%, respectively, as compared to the static method; and even higher improvement when compared to the existing RL-based LTE-V2X and Wi-Fi coexistence approach. Additionally, we analyzed the impact of NR-V2X coexistence on the Wi-Fi subsystem under mode-1 and mode-2 communications. Our findings indicate that mode-1 communication demands more spectrum resources than mode-2, leading to a performance compromise for Wi-Fi.
基于深度强化学习的NR-V2X和Wi-Fi 6E动态频谱共存
部署基于5G nr的蜂窝v2x,即NR-V2X标准,是满足日益增长的车辆低频数据传输需求的一种有前景的解决方案。NR-V2X用户的高吞吐量需求可以通过将其扩展到利用低于6ghz的未授权频谱来克服,与Wi-Fi 6E共存,从而提高整体频谱可用性。大多数现有的共存研究都依赖于基于规则的方法或经典的机器学习算法。这些方法在需要自适应决策的实时环境中可能会有所不足。在此背景下,我们引入了一种基于深度强化学习(DRL)的新型框架,用于5G NR-V2X(模式1和模式2)和Wi-Fi 6E共存。我们提出了一种基于Wi-Fi和V2X流量动态调整5G NR-V2X(模式1)或Wi-Fi 6E(模式2)传输时间的算法,以最大限度地提高两个系统的整体吞吐量。所提出的算法通过使用Network Simulator-3 (ns-3)进行大量模拟来实现,并与使用OpenAIGym开发的定制深度强化学习(DRL)框架集成。这种闭环集成实现了学习代理和高保真网络环境之间的真实动态交互,代表了研究NR-V2X和Wi-Fi共存的新型仿真设置。结果表明,在NR-V2X和Wi-Fi共存的情况下,采用DRL,车辆用户设备(vue)和Wi-Fi用户设备(wue)的平均数据速率分别比静态方法提高了24%和23%;与现有基于rl的LTE-V2X和Wi-Fi共存方法相比,甚至有更高的改进。此外,我们还分析了NR-V2X共存对模式1和模式2通信下Wi-Fi子系统的影响。我们的研究结果表明,模式1通信比模式2需要更多的频谱资源,导致Wi-Fi的性能妥协。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信