DCT-Based Channel Attention for Multivariate Time Series Classification

Amine Haboub;Hamza Baali;Abdesselam Bouzerdoum
{"title":"DCT-Based Channel Attention for Multivariate Time Series Classification","authors":"Amine Haboub;Hamza Baali;Abdesselam Bouzerdoum","doi":"10.1109/OJCS.2025.3586682","DOIUrl":null,"url":null,"abstract":"This article introduces a novel DCT-based channel attention (DCA) mechanism for time series classification (TSC) using convolutional neural networks (CNNs). Traditional squeeze-and-excitation (SE) mechanisms rely on global average pooling to model channel-wise interdependencies, which may oversimplify complex temporal dynamics. The proposed DCA model leverages discrete cosine transform (DCT) coefficients to incorporate frequency-domain information, capturing a broader spectrum of temporal features. Two selection criteria are employed to identify the most informative DCT coefficients for constructing the attention map. The first criterion utilizes the lowest frequency coefficients, whereas the second criterion selects the coefficients exhibiting the highest energy to construct the attention map. Comprehensive experiments on twelve diverse TSC datasets demonstrate that DCA consistently outperforms state-of-the-art attention mechanisms, achieving an average improvement of <inline-formula><tex-math>$\\text{2.2}{\\%}$</tex-math></inline-formula> in classification accuracy.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1110-1120"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072324","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072324/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a novel DCT-based channel attention (DCA) mechanism for time series classification (TSC) using convolutional neural networks (CNNs). Traditional squeeze-and-excitation (SE) mechanisms rely on global average pooling to model channel-wise interdependencies, which may oversimplify complex temporal dynamics. The proposed DCA model leverages discrete cosine transform (DCT) coefficients to incorporate frequency-domain information, capturing a broader spectrum of temporal features. Two selection criteria are employed to identify the most informative DCT coefficients for constructing the attention map. The first criterion utilizes the lowest frequency coefficients, whereas the second criterion selects the coefficients exhibiting the highest energy to construct the attention map. Comprehensive experiments on twelve diverse TSC datasets demonstrate that DCA consistently outperforms state-of-the-art attention mechanisms, achieving an average improvement of $\text{2.2}{\%}$ in classification accuracy.
基于dct的多变量时间序列分类通道关注
本文介绍了一种基于卷积神经网络(cnn)的基于DCA的时间序列分类(TSC)机制。传统的挤压激励(SE)机制依赖于全局平均池化来模拟通道的相互依赖性,这可能会过度简化复杂的时间动态。提出的DCA模型利用离散余弦变换(DCT)系数来合并频域信息,捕获更广泛的时间特征。采用两个选择标准来确定最具信息量的DCT系数,用于构建注意图。第一准则利用最低频率系数,而第二准则选择表现出最高能量的系数来构建注意图。在12个不同的TSC数据集上进行的综合实验表明,DCA始终优于最先进的注意力机制,在分类准确率上实现了$\text{2.2}{\%}$的平均提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信