Yan Gao, Patrick Perré, Ignacio Fierro, Filipa Lopes, Olivier Bernard
{"title":"Mechanistic Modeling of Rotating Algal Biofilms","authors":"Yan Gao, Patrick Perré, Ignacio Fierro, Filipa Lopes, Olivier Bernard","doi":"10.1002/bit.70028","DOIUrl":null,"url":null,"abstract":"Biofilm‐based microalgal cultivation systems have emerged as a promising alternative to conventional suspended growth methods, offering improved light utilization and biomass productivity. Among these, Rotating Algal Biofilm (RAB) systems are particularly advantageous by subjecting cells to short periodic light/dark (L/D) cycles to mitigate photoinhibition. Through experimental validation and modeling, this study demonstrates that optimized L/D cycles enhance photosynthetic efficiency by temporally diluting high‐intensity light. To investigate the impact of light regimes, a model was developed based on Han's photosynthesis framework, incorporating respiration dynamics for broad ranges of cycle times and L/D ratios. Calibrated with experimental data, it accurately predicts biofilm behavior under varying light conditions. A key innovation is the integration of respiration variations during intermittent illumination, providing insights into growth dynamics across frequencies and duty cycles. Key findings show that high light frequencies reduce photoinhibition and enhance growth at given intensities. Increasing the light fraction improves growth rates by reducing peak intensity and shortening dark periods. The model elucidates biofilm responses to fluctuating light and offers strategies for reactor optimization. This study advances algal biofilm photophysiology understanding and provides a predictive tool for optimization and scaling up biofilm‐based cultivation systems.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"27 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.70028","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biofilm‐based microalgal cultivation systems have emerged as a promising alternative to conventional suspended growth methods, offering improved light utilization and biomass productivity. Among these, Rotating Algal Biofilm (RAB) systems are particularly advantageous by subjecting cells to short periodic light/dark (L/D) cycles to mitigate photoinhibition. Through experimental validation and modeling, this study demonstrates that optimized L/D cycles enhance photosynthetic efficiency by temporally diluting high‐intensity light. To investigate the impact of light regimes, a model was developed based on Han's photosynthesis framework, incorporating respiration dynamics for broad ranges of cycle times and L/D ratios. Calibrated with experimental data, it accurately predicts biofilm behavior under varying light conditions. A key innovation is the integration of respiration variations during intermittent illumination, providing insights into growth dynamics across frequencies and duty cycles. Key findings show that high light frequencies reduce photoinhibition and enhance growth at given intensities. Increasing the light fraction improves growth rates by reducing peak intensity and shortening dark periods. The model elucidates biofilm responses to fluctuating light and offers strategies for reactor optimization. This study advances algal biofilm photophysiology understanding and provides a predictive tool for optimization and scaling up biofilm‐based cultivation systems.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.