De-Risking Seizure Liability: Integrating Adverse Outcome Pathways (AOPs), New Approach Methodologies (NAMs) and In Silico Approaches while Highlighting Knowledge Gaps.
Mamta Behl, Agnes Karmaus, Mohan Rao, Thomas Lane, Joshua Harris, Clifford Sachs, Alexandre Borrel, Oluwakemi Oyetade, Aswani Unnikrishnan, Jonathan Hamm, Helena T Hogberg
{"title":"De-Risking Seizure Liability: Integrating Adverse Outcome Pathways (AOPs), New Approach Methodologies (NAMs) and In Silico Approaches while Highlighting Knowledge Gaps.","authors":"Mamta Behl, Agnes Karmaus, Mohan Rao, Thomas Lane, Joshua Harris, Clifford Sachs, Alexandre Borrel, Oluwakemi Oyetade, Aswani Unnikrishnan, Jonathan Hamm, Helena T Hogberg","doi":"10.1093/toxsci/kfaf109","DOIUrl":null,"url":null,"abstract":"<p><p>Animal studies are commonly used in drug development, chemical, and environmental toxicology to predict human toxicity, but their reliability, particularly in the central nervous system (CNS) is limited. For example, animal models often fail to predict drug-induced seizures, leading to unforeseen convulsions in clinical trials. Evaluating environmental compounds, such as pesticides, also poses challenges due to time and resource constraints, resulting in compounds remaining untested. To address these limitations, a government-industry collaboration identified 25 biological target families linked to seizure mechanisms by combining key events from adverse outcome pathways (AOPs) with drug discovery data. Over a hundred vitro assay endpoints were identified, covering 24 of the target families, including neurotransmitter receptors, transporters, and voltage-gated calcium channels. A review of reference compounds identified 196 seizure-inducing and 34 seizure-negative chemicals revealed that fewer than 30% of the targets had been tested, highlighting significant data gaps. This proof-of-concept study demonstrates how mechanistic seizure liability can be assessed using an AOP framework and in vitro data. It underscores the need for expanded screening panels to include additional seizure-relevant targets. By integrating mechanistic insights into early drug development and environmental risk assessment, this approach enhances compound prioritization, complements animal studies, and optimizes resource use. Ultimately, this strategy refines CNS safety evaluation in drug development, improves public health protection to neurotoxicants, and bridges knowledge gaps.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf109","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animal studies are commonly used in drug development, chemical, and environmental toxicology to predict human toxicity, but their reliability, particularly in the central nervous system (CNS) is limited. For example, animal models often fail to predict drug-induced seizures, leading to unforeseen convulsions in clinical trials. Evaluating environmental compounds, such as pesticides, also poses challenges due to time and resource constraints, resulting in compounds remaining untested. To address these limitations, a government-industry collaboration identified 25 biological target families linked to seizure mechanisms by combining key events from adverse outcome pathways (AOPs) with drug discovery data. Over a hundred vitro assay endpoints were identified, covering 24 of the target families, including neurotransmitter receptors, transporters, and voltage-gated calcium channels. A review of reference compounds identified 196 seizure-inducing and 34 seizure-negative chemicals revealed that fewer than 30% of the targets had been tested, highlighting significant data gaps. This proof-of-concept study demonstrates how mechanistic seizure liability can be assessed using an AOP framework and in vitro data. It underscores the need for expanded screening panels to include additional seizure-relevant targets. By integrating mechanistic insights into early drug development and environmental risk assessment, this approach enhances compound prioritization, complements animal studies, and optimizes resource use. Ultimately, this strategy refines CNS safety evaluation in drug development, improves public health protection to neurotoxicants, and bridges knowledge gaps.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.