Natasha Sanjrani, Damien E Coupry, Peter Pogány, David S Palmer, Stephen D Pickett
{"title":"Benchmarking 3D Structure-Based Molecule Generators.","authors":"Natasha Sanjrani, Damien E Coupry, Peter Pogány, David S Palmer, Stephen D Pickett","doi":"10.1021/acs.jcim.5c01020","DOIUrl":null,"url":null,"abstract":"<p><p>To understand the benefits and drawbacks of 3D combinatorial and deep learning generators, a novel benchmark was created focusing on the recreation of important protein-ligand interactions and 3D ligand conformations. Using the BindingMOAD data set with a hold-out blind set, the sequential graph neural network generators, Pocket2Mol and PocketFlow, diffusion models, DiffSBDD and MolSnapper, and combinatorial genetic algorithms, AutoGrow4 and LigBuilderV3, were evaluated. It was discovered that deep learning methods fail to generate structurally valid molecules and 3D conformations, whereas combinatorial methods are slow and generate molecules that are prone to failing 2D MOSES filters. The results from this evaluation guide us toward improving deep learning structure-based generators by placing higher importance on structural validity, 3D ligand conformations, and recreation of important known active site interactions. This benchmark should be used to understand the limitations of future combinatorial and deep learning generators. The package is freely available under an Apache 2.0 license at github.com/gskcheminformatics/SBDD-benchmarking.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c01020","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
To understand the benefits and drawbacks of 3D combinatorial and deep learning generators, a novel benchmark was created focusing on the recreation of important protein-ligand interactions and 3D ligand conformations. Using the BindingMOAD data set with a hold-out blind set, the sequential graph neural network generators, Pocket2Mol and PocketFlow, diffusion models, DiffSBDD and MolSnapper, and combinatorial genetic algorithms, AutoGrow4 and LigBuilderV3, were evaluated. It was discovered that deep learning methods fail to generate structurally valid molecules and 3D conformations, whereas combinatorial methods are slow and generate molecules that are prone to failing 2D MOSES filters. The results from this evaluation guide us toward improving deep learning structure-based generators by placing higher importance on structural validity, 3D ligand conformations, and recreation of important known active site interactions. This benchmark should be used to understand the limitations of future combinatorial and deep learning generators. The package is freely available under an Apache 2.0 license at github.com/gskcheminformatics/SBDD-benchmarking.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.