The Discrete SIR Epidemic Reaction–Diffusion Model: Finite-Time Stability and Numerical Simulations

IF 0.9 Q3 MATHEMATICS, APPLIED
Issam Bendib, Ma’mon Abu Hammad, Adel Ouannas, Giuseppe Grassi
{"title":"The Discrete SIR Epidemic Reaction–Diffusion Model: Finite-Time Stability and Numerical Simulations","authors":"Issam Bendib,&nbsp;Ma’mon Abu Hammad,&nbsp;Adel Ouannas,&nbsp;Giuseppe Grassi","doi":"10.1155/cmm4/9597093","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the finite-time stability (FTS) of a discrete SIR epidemic reaction–diffusion (R-D) model. The study begins with discretizing a continuous R-D system using finite difference methods (FDMs), ensuring that essential characteristics like positivity and consistency are maintained. The resulting discrete model captures the interplay between spatial heterogeneity, diffusion rates, and reaction dynamics, enabling a robust framework for theoretical analysis. Employing Lyapunov-based techniques and eigenvalue analysis, we derive sufficient conditions for achieving FTS, which is crucial for rapid epidemic containment. The theoretical findings are validated through comprehensive numerical simulations that examine the effects of varying diffusion coefficients, reaction rates, and boundary conditions on system stability. The results highlight the critical role of these factors in achieving FTS of epidemic dynamics. This work contributes to developing efficient computational tools and theoretical insights for modeling and controlling infectious diseases in spatially extended populations, providing a foundation for future research on fractional-order models and complex boundary conditions.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/9597093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/9597093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the finite-time stability (FTS) of a discrete SIR epidemic reaction–diffusion (R-D) model. The study begins with discretizing a continuous R-D system using finite difference methods (FDMs), ensuring that essential characteristics like positivity and consistency are maintained. The resulting discrete model captures the interplay between spatial heterogeneity, diffusion rates, and reaction dynamics, enabling a robust framework for theoretical analysis. Employing Lyapunov-based techniques and eigenvalue analysis, we derive sufficient conditions for achieving FTS, which is crucial for rapid epidemic containment. The theoretical findings are validated through comprehensive numerical simulations that examine the effects of varying diffusion coefficients, reaction rates, and boundary conditions on system stability. The results highlight the critical role of these factors in achieving FTS of epidemic dynamics. This work contributes to developing efficient computational tools and theoretical insights for modeling and controlling infectious diseases in spatially extended populations, providing a foundation for future research on fractional-order models and complex boundary conditions.

Abstract Image

离散SIR流行病反应-扩散模型:有限时间稳定性和数值模拟
本文研究了离散SIR流行病反应扩散模型的有限时间稳定性。该研究首先使用有限差分方法(fdm)对连续R-D系统进行离散化,以确保保持积极性和一致性等基本特征。由此产生的离散模型捕获了空间异质性、扩散速率和反应动力学之间的相互作用,为理论分析提供了一个强大的框架。利用基于李雅普诺夫的技术和特征值分析,我们得出了实现FTS的充分条件,这对快速控制疫情至关重要。通过全面的数值模拟验证了理论发现,该数值模拟检验了不同扩散系数、反应速率和边界条件对系统稳定性的影响。结果突出了这些因素在实现流行动力学FTS方面的关键作用。这项工作有助于开发高效的计算工具和理论见解,以模拟和控制空间扩展人群中的传染病,为未来对分数阶模型和复杂边界条件的研究奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信