{"title":"The wheat VIH2-3B, a functional PPIP5K controls the localization of fasciclin-like arabinogalactan protein","authors":"Anuj Shukla , Reshma Gopal , Riya Ghosh , Ankur Chaudhuri , Kanupriya Agrwal , Rahul Tanwar , Henning Jacob Jessen , Debabrata Laha , Ajay Kumar Pandey","doi":"10.1016/j.jbior.2025.101103","DOIUrl":null,"url":null,"abstract":"<div><div>Inositol pyrophosphates (PP-InsPs) are important signalling molecules that participate in multiple physiological processes across a wide range of eukaryotes. Metabolic pathway kinases (VIP1/VIHs) leading to the production of PP-InsPs are now well characterized in yeast and plants. Previously, the wheat (<em>Triticum aestivum</em> L.) inositol pyrophosphate kinase (TaVIH2) was shown to encode a catalytic active kinase domain. Heterologous expression of TaVIH2 in <em>Arabidopsis thaliana</em> was shown to enhance drought tolerance by modulating the cell composition. In this study, we attempted to identify the interacting protein targets of wheat VIH2-3B using a yeast two-hybrid (Y2H) cDNA library screen, which led to the identification of 52 putative interactors that are primarily involved in cell wall-related functions. Notably, fasciclin-like arabinogalactan protein (FLA7), a glycosylphosphatidyl inositol (GPI)-anchored protein, emerged as the most frequently interacting partner. Further analysis using pulldown assays validated the interaction between TaVIH2-3B and TaFLA7 in vivo. Using the reporter fusion studies, we observed the localization of TaFLA7 to be a plasma membrane and this localization of the TaFLA7 was perturbed in the yeast vip1Δ strain. The expression of TaVIH2-3B bearing PPIP5K enzymatic activity in yeast mutants rescued the level of IP<sub>8</sub> and restore the localization of the TaFLA7 to the membrane. Expression analysis of TaFLA7 revealed a differential expression response to drought in wheat shoot tissues. TaFLA7 was also found to be highly expressed during grain development, particularly in the endosperm and seed coat during grain maturation. Taken together, these findings highlight the potential role of TaVIH2 in cell wall remodelling and stress response pathways, offering new insights into the functional roles of VIH proteins in plants.</div></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"97 ","pages":"Article 101103"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biological regulation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212492625000302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Inositol pyrophosphates (PP-InsPs) are important signalling molecules that participate in multiple physiological processes across a wide range of eukaryotes. Metabolic pathway kinases (VIP1/VIHs) leading to the production of PP-InsPs are now well characterized in yeast and plants. Previously, the wheat (Triticum aestivum L.) inositol pyrophosphate kinase (TaVIH2) was shown to encode a catalytic active kinase domain. Heterologous expression of TaVIH2 in Arabidopsis thaliana was shown to enhance drought tolerance by modulating the cell composition. In this study, we attempted to identify the interacting protein targets of wheat VIH2-3B using a yeast two-hybrid (Y2H) cDNA library screen, which led to the identification of 52 putative interactors that are primarily involved in cell wall-related functions. Notably, fasciclin-like arabinogalactan protein (FLA7), a glycosylphosphatidyl inositol (GPI)-anchored protein, emerged as the most frequently interacting partner. Further analysis using pulldown assays validated the interaction between TaVIH2-3B and TaFLA7 in vivo. Using the reporter fusion studies, we observed the localization of TaFLA7 to be a plasma membrane and this localization of the TaFLA7 was perturbed in the yeast vip1Δ strain. The expression of TaVIH2-3B bearing PPIP5K enzymatic activity in yeast mutants rescued the level of IP8 and restore the localization of the TaFLA7 to the membrane. Expression analysis of TaFLA7 revealed a differential expression response to drought in wheat shoot tissues. TaFLA7 was also found to be highly expressed during grain development, particularly in the endosperm and seed coat during grain maturation. Taken together, these findings highlight the potential role of TaVIH2 in cell wall remodelling and stress response pathways, offering new insights into the functional roles of VIH proteins in plants.