Low-variability, high-endurance memristive behavior in Tungsten-functionalized GO Based Cu doped NiO nanocomposites for next-generation memory devices

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
B.V. Solanke , N.D. Raskar , D.V. Dake , V.A. Mane , R.B. Sonpir , G.D. Raylkar , K.M. Chavan , S.S. Munde , P.R. Kayande , B.N. Dole
{"title":"Low-variability, high-endurance memristive behavior in Tungsten-functionalized GO Based Cu doped NiO nanocomposites for next-generation memory devices","authors":"B.V. Solanke ,&nbsp;N.D. Raskar ,&nbsp;D.V. Dake ,&nbsp;V.A. Mane ,&nbsp;R.B. Sonpir ,&nbsp;G.D. Raylkar ,&nbsp;K.M. Chavan ,&nbsp;S.S. Munde ,&nbsp;P.R. Kayande ,&nbsp;B.N. Dole","doi":"10.1016/j.matchemphys.2025.131352","DOIUrl":null,"url":null,"abstract":"<div><div>A tungsten-functionalized graphene oxide-based Cu-doped NiO (GCNO) nanocomposite was synthesized via a hydrothermal method and evaluated for memristor applications. The GCNO exhibited a high surface area of 249.04 m<sup>2</sup>/g and mesoporosity (∼0.498 cc/g), enabling efficient ion transport and redox activity. Structural tuning led to a reduced crystallite size of 12.04 nm and enhanced microstrain (0.93 %), promoting high oxygen vacancy concentration for stable switching. Electrical testing revealed a symmetric, pinched I–V hysteresis loop with a stable and measurable ON/OFF ratio, low resistance (0.109 μΩ), and dual conduction mechanisms: Schottky emission at low bias and filamentary switching at high bias. The device demonstrated excellent endurance, stable retention over 500's, and low variability between high and low resistance states across cycles. These results establish GCNO as a robust candidate for next-generation non-volatile memory and neuromorphic computing.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"346 ","pages":"Article 131352"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425009988","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A tungsten-functionalized graphene oxide-based Cu-doped NiO (GCNO) nanocomposite was synthesized via a hydrothermal method and evaluated for memristor applications. The GCNO exhibited a high surface area of 249.04 m2/g and mesoporosity (∼0.498 cc/g), enabling efficient ion transport and redox activity. Structural tuning led to a reduced crystallite size of 12.04 nm and enhanced microstrain (0.93 %), promoting high oxygen vacancy concentration for stable switching. Electrical testing revealed a symmetric, pinched I–V hysteresis loop with a stable and measurable ON/OFF ratio, low resistance (0.109 μΩ), and dual conduction mechanisms: Schottky emission at low bias and filamentary switching at high bias. The device demonstrated excellent endurance, stable retention over 500's, and low variability between high and low resistance states across cycles. These results establish GCNO as a robust candidate for next-generation non-volatile memory and neuromorphic computing.

Abstract Image

用于下一代存储器件的钨功能化氧化石墨烯基Cu掺杂NiO纳米复合材料的低变异性、高耐久记忆行为
采用水热法合成了钨功能化氧化石墨烯基cu掺杂NiO (GCNO)纳米复合材料,并对其忆阻器应用进行了评价。GCNO具有249.04 m2/g的高表面积和介孔率(~ 0.498 cc/g),具有高效的离子传输和氧化还原活性。结构调整导致晶体尺寸减小到12.04 nm,微应变增强(0.93%),促进了高氧空位浓度的稳定开关。电学测试显示了一个对称的,掐位的I-V迟滞环,具有稳定和可测量的ON/OFF比,低电阻(0.109 μΩ)和双传导机制:低偏置下的肖特基发射和高偏置下的丝状开关。该装置表现出优异的耐力,稳定的保留超过500,高和低电阻状态之间的低变异性跨周期。这些结果确立了GCNO作为下一代非易失性存储器和神经形态计算的可靠候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信