Computing quadratic subfields of number fields

Andreas-Stephan Elsenhans , Jürgen Klüners
{"title":"Computing quadratic subfields of number fields","authors":"Andreas-Stephan Elsenhans ,&nbsp;Jürgen Klüners","doi":"10.1016/j.jaca.2025.100039","DOIUrl":null,"url":null,"abstract":"<div><div>Given a number field, it is an important question in algorithmic number theory to determine all its subfields. If the search is restricted to abelian subfields, we can try to determine them by using class field theory. For this, it is necessary to know the ramified primes. We show that the ramified primes of the subfield can be computed efficiently. Using this information, we give algorithms to determine all quadratic and cyclic cubic subfields of the initial field. The approach generalises to cyclic subfields of prime degree. In the case of quadratic subfields, our approach is much faster than other methods.</div></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"15 ","pages":"Article 100039"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827725000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a number field, it is an important question in algorithmic number theory to determine all its subfields. If the search is restricted to abelian subfields, we can try to determine them by using class field theory. For this, it is necessary to know the ramified primes. We show that the ramified primes of the subfield can be computed efficiently. Using this information, we give algorithms to determine all quadratic and cyclic cubic subfields of the initial field. The approach generalises to cyclic subfields of prime degree. In the case of quadratic subfields, our approach is much faster than other methods.
计算数字域的二次子域
给定一个数域,如何确定其所有子域是算法数论中的一个重要问题。如果搜索仅限于阿贝尔子域,我们可以尝试使用类场论来确定它们。为此,有必要知道派生素数。我们证明了子域的分支素数可以有效地计算。利用这些信息,给出了确定初始域的所有二次子域和循环三次子域的算法。该方法推广到素数次的循环子域。在二次子域的情况下,我们的方法比其他方法快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信