Graphene-like MoS2/C sandwiched-structures for kinetic acceleration of polysulfide conversion in LiS batteries

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Rongbin He , Weiwei Jiang , Zishan Yang , Xueyou Gao , Hang Zhang , Xiangxu Zeng , Yuhao He , Jiajin Wei , Congbin Zeng , Jin Xiao , Zhihao Yue , Fugen Sun
{"title":"Graphene-like MoS2/C sandwiched-structures for kinetic acceleration of polysulfide conversion in LiS batteries","authors":"Rongbin He ,&nbsp;Weiwei Jiang ,&nbsp;Zishan Yang ,&nbsp;Xueyou Gao ,&nbsp;Hang Zhang ,&nbsp;Xiangxu Zeng ,&nbsp;Yuhao He ,&nbsp;Jiajin Wei ,&nbsp;Congbin Zeng ,&nbsp;Jin Xiao ,&nbsp;Zhihao Yue ,&nbsp;Fugen Sun","doi":"10.1016/j.jcis.2025.138497","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene-like MoS<sub>2</sub>/C composites with sandwiched-structures have been fabricated through a facile hydrothermal process and subsequent annealing treatment, which are used to modify separators for Li<img>S batteries. The sandwiched carbons could not only generate fast electronic conducting channels between MoS<sub>2</sub> layers to endow MoS<sub>2</sub>/C with high conductivity, but also prevent MoS<sub>2</sub> layers from re-stacking to obtain few- or single-layered MoS<sub>2</sub> with large amounts of active-sites for polysulfide adsorption and electro-catalysis. Therefore, the MoS<sub>2</sub>/C composites could effectively promote the polysulfide conversion and Li<sub>2</sub>S deposition, and the MoS<sub>2</sub>/C modified polypropylene (MoS<sub>2</sub>/C@PP) separators could greatly prohibit the polysulfide shuttling to enhance the electrochemical performances of Li<img>S batteries. The Li<img>S batteries equipped with MoS<sub>2</sub>/C-3@PP separators at an optimized MoS<sub>2</sub> content deliver a high reversible capacity of 1262 mAh g<sup>−1</sup> at the 1st cycle and outstanding cycling stability with 791, 763 and 722 mAh g<sup>−1</sup> after 100 cycles at 0.2C, 0.5C and 1C, respectively. Furthermore, the MoS<sub>2</sub>/C-3@PP separators could help the Li<img>S pouch cells possessing high-areal-loading S/C cathodes and lean electrolytes to exhibit better electrochemical performances. These encouraging results suggest that the sandwich-structured composites constructed by graphene-like transition-metal dichalcogenides (TMDs) and carbon layers could be a type of promising catalyst for advanced Li<img>S batteries.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138497"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725018880","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene-like MoS2/C composites with sandwiched-structures have been fabricated through a facile hydrothermal process and subsequent annealing treatment, which are used to modify separators for LiS batteries. The sandwiched carbons could not only generate fast electronic conducting channels between MoS2 layers to endow MoS2/C with high conductivity, but also prevent MoS2 layers from re-stacking to obtain few- or single-layered MoS2 with large amounts of active-sites for polysulfide adsorption and electro-catalysis. Therefore, the MoS2/C composites could effectively promote the polysulfide conversion and Li2S deposition, and the MoS2/C modified polypropylene (MoS2/C@PP) separators could greatly prohibit the polysulfide shuttling to enhance the electrochemical performances of LiS batteries. The LiS batteries equipped with MoS2/C-3@PP separators at an optimized MoS2 content deliver a high reversible capacity of 1262 mAh g−1 at the 1st cycle and outstanding cycling stability with 791, 763 and 722 mAh g−1 after 100 cycles at 0.2C, 0.5C and 1C, respectively. Furthermore, the MoS2/C-3@PP separators could help the LiS pouch cells possessing high-areal-loading S/C cathodes and lean electrolytes to exhibit better electrochemical performances. These encouraging results suggest that the sandwich-structured composites constructed by graphene-like transition-metal dichalcogenides (TMDs) and carbon layers could be a type of promising catalyst for advanced LiS batteries.

Abstract Image

石墨烯类MoS2/C夹层结构对锂离子电池中多硫化物转化的动力学加速
通过简单的水热法和随后的退火处理,制备了具有三明治结构的类石墨烯MoS2/C复合材料,用于改性锂离子电池的隔板。夹碳不仅可以在MoS2层之间形成快速的电子导电通道,使MoS2/C具有高导电性,而且可以防止MoS2层重新堆叠,获得具有大量活性位点的多层或单层MoS2,用于多硫化物吸附和电催化。因此,MoS2/C复合材料可以有效地促进多硫化物的转化和Li2S的沉积,而MoS2/C改性聚丙烯(MoS2/C@PP)隔膜可以极大地阻止多硫化物的穿梭,从而提高锂离子电池的电化学性能。在优化的MoS2含量下,配备MoS2/C-3@PP分离器的锂离子电池在第一次循环时具有1262 mAh g - 1的高可逆容量,在0.2C, 0.5C和1C下循环100次后分别具有791,763和722 mAh g - 1的出色循环稳定性。此外,MoS2/C-3@PP隔膜可以帮助具有高面积负载S/C阴极和贫电解质的锂离子袋状电池表现出更好的电化学性能。这些令人鼓舞的结果表明,由石墨烯类过渡金属二硫族化合物(TMDs)和碳层构成的三明治结构复合材料可能是一种有前途的先进锂电池催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信