NEDL-GCP: A nested ensemble deep learning model for Gynecological cancer risk prediction

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-07-23 DOI:10.1016/j.array.2025.100468
Kamal Berahmand , Xujuan Zhou , Yuefeng Li , Raj Gururajan , Prabal Datta Barua , U Rajendra Acharya , Srinivas Kondalsamy Chennakesavan
{"title":"NEDL-GCP: A nested ensemble deep learning model for Gynecological cancer risk prediction","authors":"Kamal Berahmand ,&nbsp;Xujuan Zhou ,&nbsp;Yuefeng Li ,&nbsp;Raj Gururajan ,&nbsp;Prabal Datta Barua ,&nbsp;U Rajendra Acharya ,&nbsp;Srinivas Kondalsamy Chennakesavan","doi":"10.1016/j.array.2025.100468","DOIUrl":null,"url":null,"abstract":"<div><div>Gynecological cancer remains a critical global health concern, where early detection significantly improves patient outcomes. Despite advances in deep learning for medical diagnostics, existing models often struggle with feature redundancy, lack of generalizability, and suboptimal integration of diverse feature representations, limiting their effectiveness in clinical applications. In this study, we present NEDL-GCP, a Nested Ensemble Deep Learning model for Gynecological Cancer Risk Prediction, which uses a hierarchical ensemble framework to improve the accuracy of the classification. NEDL-GCP integrates CNNs, RNNs, and SVMs as base learners, extracting diverse feature representations, while a meta-classifier combining J48 and Stochastic Gradient Descent (SGD) refines predictions. Evaluated on the Herlev and SIPaKMeD Pap Smear datasets, NEDL-GCP achieved state-of-the-art accuracy scores of 99.1% and 98.5%, outperforming existing methods. These results demonstrate the robustness and reliability of the model, making it a valuable tool for the early detection of cervical cancer. By enhancing diagnostic accuracy and optimizing clinical workflows, NEDL-GCP supports timely decision-making, ultimately improving patient care.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100468"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Gynecological cancer remains a critical global health concern, where early detection significantly improves patient outcomes. Despite advances in deep learning for medical diagnostics, existing models often struggle with feature redundancy, lack of generalizability, and suboptimal integration of diverse feature representations, limiting their effectiveness in clinical applications. In this study, we present NEDL-GCP, a Nested Ensemble Deep Learning model for Gynecological Cancer Risk Prediction, which uses a hierarchical ensemble framework to improve the accuracy of the classification. NEDL-GCP integrates CNNs, RNNs, and SVMs as base learners, extracting diverse feature representations, while a meta-classifier combining J48 and Stochastic Gradient Descent (SGD) refines predictions. Evaluated on the Herlev and SIPaKMeD Pap Smear datasets, NEDL-GCP achieved state-of-the-art accuracy scores of 99.1% and 98.5%, outperforming existing methods. These results demonstrate the robustness and reliability of the model, making it a valuable tool for the early detection of cervical cancer. By enhancing diagnostic accuracy and optimizing clinical workflows, NEDL-GCP supports timely decision-making, ultimately improving patient care.
NEDL-GCP:用于妇科癌症风险预测的嵌套集成深度学习模型
妇科癌症仍然是一个重要的全球健康问题,早期发现可显著改善患者的预后。尽管深度学习在医学诊断方面取得了进展,但现有模型经常与特征冗余、缺乏泛化性以及不同特征表示的次优集成等问题作斗争,限制了它们在临床应用中的有效性。在本研究中,我们提出了一种用于妇科癌症风险预测的嵌套集成深度学习模型NEDL-GCP,该模型使用分层集成框架来提高分类的准确性。NEDL-GCP将cnn、rnn和svm作为基础学习器,提取不同的特征表示,而结合J48和随机梯度下降(SGD)的元分类器对预测进行细化。在Herlev和SIPaKMeD巴氏涂片数据集上进行评估,NEDL-GCP达到了最先进的准确率分数99.1%和98.5%,优于现有方法。这些结果证明了该模型的鲁棒性和可靠性,使其成为宫颈癌早期检测的有价值的工具。通过提高诊断准确性和优化临床工作流程,NEDL-GCP支持及时决策,最终改善患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信