RadEx: An open source python package for nonlinear radon transformation

IF 1.2 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Farida Mohsen, Ashhadul Islam, Firas Mohsen, Zubair Shah, Samir Brahim Belhaouari
{"title":"RadEx: An open source python package for nonlinear radon transformation","authors":"Farida Mohsen,&nbsp;Ashhadul Islam,&nbsp;Firas Mohsen,&nbsp;Zubair Shah,&nbsp;Samir Brahim Belhaouari","doi":"10.1016/j.simpa.2025.100779","DOIUrl":null,"url":null,"abstract":"<div><div>Effective feature extraction from medical images is important for improving disease detection and assessment. Conventional linear transforms, such as the Radon transform, may not fully capture subtle and complex nonlinear features present in medical imaging data. To address these limitations, we present RadEx, a nonlinear extension of the Radon transform. RadEx employs parameterized nonlinear projections to facilitate the extraction of additional nonlinear feature representations from imaging modalities such as chest X-rays and retinal fundus images. Initial evaluations indicate that RadEx can offer improvements over traditional Radon transforms and raw image-based approaches in disease classification tasks, including COVID-19 detection from chest X-rays and diabetic retinopathy grading from retinal images. By capturing more complex structural and nonlinear patterns, RadEx may support enhanced diagnostic performance and illustrates the potential benefit of integrating adaptive mathematical transformations into medical imaging workflows.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"25 ","pages":"Article 100779"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Effective feature extraction from medical images is important for improving disease detection and assessment. Conventional linear transforms, such as the Radon transform, may not fully capture subtle and complex nonlinear features present in medical imaging data. To address these limitations, we present RadEx, a nonlinear extension of the Radon transform. RadEx employs parameterized nonlinear projections to facilitate the extraction of additional nonlinear feature representations from imaging modalities such as chest X-rays and retinal fundus images. Initial evaluations indicate that RadEx can offer improvements over traditional Radon transforms and raw image-based approaches in disease classification tasks, including COVID-19 detection from chest X-rays and diabetic retinopathy grading from retinal images. By capturing more complex structural and nonlinear patterns, RadEx may support enhanced diagnostic performance and illustrates the potential benefit of integrating adaptive mathematical transformations into medical imaging workflows.
一个用于非线性氡变换的开源python包
有效的医学图像特征提取对于提高疾病的检测和评估具有重要意义。传统的线性变换,如Radon变换,可能不能完全捕获医学成像数据中存在的微妙和复杂的非线性特征。为了解决这些限制,我们提出radx, Radon变换的非线性扩展。RadEx采用参数化非线性投影,方便从胸部x光片和视网膜眼底图像等成像模式中提取额外的非线性特征表示。初步评估表明,在疾病分类任务中,RadEx可以比传统的氡变换和基于原始图像的方法提供改进,包括从胸部x射线检测COVID-19和从视网膜图像分级糖尿病视网膜病变。通过捕获更复杂的结构和非线性模式,radx可以支持增强的诊断性能,并说明将自适应数学转换集成到医学成像工作流程中的潜在好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信