Elliptic Harnack inequality and its applications on Finsler metric measure spaces

IF 1.3 2区 数学 Q1 MATHEMATICS
Xinyue Cheng, Liulin Liu, Yu Zhang
{"title":"Elliptic Harnack inequality and its applications on Finsler metric measure spaces","authors":"Xinyue Cheng,&nbsp;Liulin Liu,&nbsp;Yu Zhang","doi":"10.1016/j.na.2025.113907","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the elliptic Harnack inequality and its applications on forward complete Finsler metric measure spaces under the conditions that the weighted Ricci curvature <span><math><msub><mrow><mi>Ric</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> has non-positive lower bound and the distortion <span><math><mi>τ</mi></math></span> is of linear growth, <span><math><mrow><mrow><mo>|</mo><mi>τ</mi><mo>|</mo></mrow><mo>≤</mo><mi>a</mi><mi>r</mi><mo>+</mo><mi>b</mi></mrow></math></span>, where <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></math></span> are some non-negative constants, <span><math><mrow><mi>r</mi><mo>=</mo><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is the distance function for some point <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>M</mi></mrow></math></span>. We obtain an elliptic <span><math><mi>p</mi></math></span>-Harnack inequality for positive harmonic functions from a local uniform Poincaré inequality and a mean value inequality. As applications of the Harnack inequality, we derive the Hölder continuity estimate and a Liouville theorem for positive harmonic functions. Furthermore, we establish a gradient estimate for positive harmonic functions.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113907"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001610","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the elliptic Harnack inequality and its applications on forward complete Finsler metric measure spaces under the conditions that the weighted Ricci curvature Ric has non-positive lower bound and the distortion τ is of linear growth, |τ|ar+b, where a,b are some non-negative constants, r=d(x0,x) is the distance function for some point x0M. We obtain an elliptic p-Harnack inequality for positive harmonic functions from a local uniform Poincaré inequality and a mean value inequality. As applications of the Harnack inequality, we derive the Hölder continuity estimate and a Liouville theorem for positive harmonic functions. Furthermore, we establish a gradient estimate for positive harmonic functions.
椭圆型哈纳克不等式及其在Finsler度量测度空间上的应用
本文研究了前向完备Finsler度量空间中,加权Ricci曲率Ric∞具有非正下界,畸变τ为线性增长,|τ|≤ar+b,其中a,b为非负常数,r=d(x0,x)为某点x0∈M的距离函数的条件下椭圆型Harnack不等式及其应用。从局部一致poincarcarr不等式和均值不等式出发,得到了正调和函数的椭圆p-Harnack不等式。作为Harnack不等式的应用,我们得到了正调和函数的Hölder连续性估计和一个Liouville定理。进一步,我们建立了正调和函数的梯度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信