Behavioral psychology of LLMs: Better task guidance through punishment and reinforcement

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sisi Peng , Wenlin Zhang , Shunhang Li , Dan Qu , Han Wei
{"title":"Behavioral psychology of LLMs: Better task guidance through punishment and reinforcement","authors":"Sisi Peng ,&nbsp;Wenlin Zhang ,&nbsp;Shunhang Li ,&nbsp;Dan Qu ,&nbsp;Han Wei","doi":"10.1016/j.neucom.2025.131040","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in Large Language Models (LLMs) have sparked interest in their emotional intelligence, but their behavioral psychology—particularly emotion-driven decision-making akin to humans— remains poorly understood. This study introduces Behavioral Consequence Scenarios (BCSs), a structured framework simulating psychologically salient punishment and reinforcement dynamics. We test the emotional perception and empathy abilities of LLMs using psychological scales and examine the emotional variation patterns across different BCSs. The findings suggest that LLMs exhibit rudimentary emotional perception and empathy capabilities, and their emotional responses generally align with human behavior. Building on this, we propose Behavioral Consequence Scenario Prompting (BCSP), a method that injects BCS-driven emotional incentives into task instructions. Experiments on Wizard-of-Wikipedia and CMMLU demonstrate BCSP’s efficacy: in dialogue generation, BCSP achieved at least a 3.53/1.74 improvement in BLEU-2/4, and in the multi-task language understanding test, BCSP gained a 2 % improvement in overall accuracy. Our findings bridge LLMs’ alignment with human-like emotion-behavior dynamics, and encourage deeper investigation into the behavioral psychology and emotional patterns of LLMs.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"652 ","pages":"Article 131040"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225017126","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in Large Language Models (LLMs) have sparked interest in their emotional intelligence, but their behavioral psychology—particularly emotion-driven decision-making akin to humans— remains poorly understood. This study introduces Behavioral Consequence Scenarios (BCSs), a structured framework simulating psychologically salient punishment and reinforcement dynamics. We test the emotional perception and empathy abilities of LLMs using psychological scales and examine the emotional variation patterns across different BCSs. The findings suggest that LLMs exhibit rudimentary emotional perception and empathy capabilities, and their emotional responses generally align with human behavior. Building on this, we propose Behavioral Consequence Scenario Prompting (BCSP), a method that injects BCS-driven emotional incentives into task instructions. Experiments on Wizard-of-Wikipedia and CMMLU demonstrate BCSP’s efficacy: in dialogue generation, BCSP achieved at least a 3.53/1.74 improvement in BLEU-2/4, and in the multi-task language understanding test, BCSP gained a 2 % improvement in overall accuracy. Our findings bridge LLMs’ alignment with human-like emotion-behavior dynamics, and encourage deeper investigation into the behavioral psychology and emotional patterns of LLMs.
法学硕士的行为心理学:通过惩罚和强化来更好地指导任务
大型语言模型(llm)的最新进展引发了人们对它们情商的兴趣,但它们的行为心理学——尤其是类似于人类的情感驱动决策——仍然知之甚少。本研究引入了一个模拟心理显著性惩罚和强化动态的结构化框架——行为后果情景。本研究采用心理量表对法学硕士的情绪感知和共情能力进行了测试,并考察了不同bcs之间的情绪变化模式。研究结果表明,法学硕士表现出基本的情绪感知和同理心能力,他们的情绪反应通常与人类行为一致。在此基础上,我们提出了行为后果情景提示(BCSP),一种将bcs驱动的情感激励注入任务指令的方法。在Wizard-of-Wikipedia和CMMLU上的实验证明了BCSP的有效性:在对话生成中,BCSP在BLEU-2/4中至少提高了3.53/1.74,在多任务语言理解测试中,BCSP的整体准确率提高了2 %。我们的研究结果将法学硕士与人类情感行为动力学的一致性联系起来,并鼓励对法学硕士的行为心理学和情感模式进行更深入的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信