Sushma S.A. , Madhunisha E. , Sourav Kanti Addya , Saifur Rahman , Shantanu Pal , Chandan Karmakar
{"title":"Delay-aware partial task offloading using multicriteria decision model in IoT–fog–cloud networks","authors":"Sushma S.A. , Madhunisha E. , Sourav Kanti Addya , Saifur Rahman , Shantanu Pal , Chandan Karmakar","doi":"10.1016/j.jnca.2025.104278","DOIUrl":null,"url":null,"abstract":"<div><div>Fog computing plays a prominent role in offloading computational tasks in heterogeneous environments since it provides less service delay than traditional cloud computing. The Internet of Things (IoT) devices cannot handle complex tasks due to less battery power, storage and computational capability. Full offloading has issues in providing efficient computation delay due to more response time and transmission cost. A suitable solution to overcome this problem is to partition the tasks into splittable subtasks. Considering multi-criteria decision parameters like processing efficiency and deadline helps to achieve efficient resource allocation and task assignment. The matching theory is applied to map task nodes to heterogeneous fog nodes and VMs for stability. Compared to baseline algorithms, proposed algorithms like Resource Allocation based on Processing Efficiency (RABP) and Task Assignment Based on Completion Time (TAC) are efficient enough to provide reasonable service delay and discard the non-beneficial tasks, i.e., tasks that do not execute within the deadline.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"242 ","pages":"Article 104278"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804525001754","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Fog computing plays a prominent role in offloading computational tasks in heterogeneous environments since it provides less service delay than traditional cloud computing. The Internet of Things (IoT) devices cannot handle complex tasks due to less battery power, storage and computational capability. Full offloading has issues in providing efficient computation delay due to more response time and transmission cost. A suitable solution to overcome this problem is to partition the tasks into splittable subtasks. Considering multi-criteria decision parameters like processing efficiency and deadline helps to achieve efficient resource allocation and task assignment. The matching theory is applied to map task nodes to heterogeneous fog nodes and VMs for stability. Compared to baseline algorithms, proposed algorithms like Resource Allocation based on Processing Efficiency (RABP) and Task Assignment Based on Completion Time (TAC) are efficient enough to provide reasonable service delay and discard the non-beneficial tasks, i.e., tasks that do not execute within the deadline.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.