Painless Differentiable Rotation Dynamics

IF 9.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Magí Romanyà-Serrasolsas, Juan J. Casafranca, Miguel A. Otaduy
{"title":"Painless Differentiable Rotation Dynamics","authors":"Magí Romanyà-Serrasolsas, Juan J. Casafranca, Miguel A. Otaduy","doi":"10.1145/3730944","DOIUrl":null,"url":null,"abstract":"We propose the formulation of forward and differentiable rigid-body dynamics using Lie-algebra rotation derivatives. In particular, we show how this approach can easily be applied to incremental-potential formulations of forward dymamics, and we introduce a novel definition of adjoints for differentiable dynamics. In contrast to other parameterizations of rotations (notably the popular rotation-vector parameterization), our approach leads to painlessly simple and compact derivatives, better conditioning, and higher runtime efficiency. We demonstrate our approach on fundamental rigid-body problems, but also on Cosserat rods as an example of multi-rigid-body dynamics.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"79 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3730944","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We propose the formulation of forward and differentiable rigid-body dynamics using Lie-algebra rotation derivatives. In particular, we show how this approach can easily be applied to incremental-potential formulations of forward dymamics, and we introduce a novel definition of adjoints for differentiable dynamics. In contrast to other parameterizations of rotations (notably the popular rotation-vector parameterization), our approach leads to painlessly simple and compact derivatives, better conditioning, and higher runtime efficiency. We demonstrate our approach on fundamental rigid-body problems, but also on Cosserat rods as an example of multi-rigid-body dynamics.
无痛可微旋转动力学
我们提出了利用李代数旋转导数的正微分刚体动力学公式。特别地,我们展示了这种方法如何容易地应用于正向动力学的增量势公式,并且我们为可微动力学引入了伴随的新定义。与旋转的其他参数化(特别是流行的旋转矢量参数化)相比,我们的方法带来了简单而紧凑的导数,更好的调节和更高的运行时效率。我们在基本刚体问题上展示了我们的方法,也在多刚体动力学的一个例子上展示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信