{"title":"Improving neural network training using dynamic learning rate schedule for PINNs and image classification","authors":"Veerababu Dharanalakota , Ashwin Arvind Raikar , Prasanta Kumar Ghosh","doi":"10.1016/j.mlwa.2025.100697","DOIUrl":null,"url":null,"abstract":"<div><div>Training neural networks can be challenging, especially as the complexity of the problem increases. Despite using wider or deeper networks, training them can be a tedious process, especially if a wrong choice of the hyperparameter is made. The learning rate is one of such crucial hyperparameters, which is usually kept static during the training process. Learning dynamics in complex systems often requires a more adaptive approach to the learning rate. This adaptability becomes crucial to effectively navigate varying gradients and optimize the learning process during the training process. In this paper, a dynamic learning rate scheduler (DLRS) algorithm is presented that adapts the learning rate based on the loss values calculated during the training process. Experiments are conducted on problems related to physics-informed neural networks (PINNs) and image classification using multilayer perceptrons and convolutional neural networks, respectively. The results demonstrate that the proposed DLRS accelerates training and improves stability.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"21 ","pages":"Article 100697"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Training neural networks can be challenging, especially as the complexity of the problem increases. Despite using wider or deeper networks, training them can be a tedious process, especially if a wrong choice of the hyperparameter is made. The learning rate is one of such crucial hyperparameters, which is usually kept static during the training process. Learning dynamics in complex systems often requires a more adaptive approach to the learning rate. This adaptability becomes crucial to effectively navigate varying gradients and optimize the learning process during the training process. In this paper, a dynamic learning rate scheduler (DLRS) algorithm is presented that adapts the learning rate based on the loss values calculated during the training process. Experiments are conducted on problems related to physics-informed neural networks (PINNs) and image classification using multilayer perceptrons and convolutional neural networks, respectively. The results demonstrate that the proposed DLRS accelerates training and improves stability.