Optimizing travel time reliability with XAI: A Virginia interstate network case using machine learning and meta-heuristics

IF 4.9
Navid Khorshidi , Shahriar Afandizadeh Zargari , Soheil Rezashoar , Hamid Mirzahossein
{"title":"Optimizing travel time reliability with XAI: A Virginia interstate network case using machine learning and meta-heuristics","authors":"Navid Khorshidi ,&nbsp;Shahriar Afandizadeh Zargari ,&nbsp;Soheil Rezashoar ,&nbsp;Hamid Mirzahossein","doi":"10.1016/j.mlwa.2025.100709","DOIUrl":null,"url":null,"abstract":"<div><div>This paper applies machine learning models to predict travel time reliability in transportation networks, using XGBoost, LightGBM, and CatBoost optimized with seven metaheuristic algorithms. The models were fine-tuned with a four-year dataset (2014–2017) covering 59 interstate sections in Virginia. Key features Link Length, AADT/mile/lane, Total Rate, and PRCP/1000 were identified as influential factors for travel time index prediction. Results revealed that XGBoost optimized with Grey Wolf Optimizer (GWO) achieved the highest accuracy at 92 %, surpassing the base model. LightGBM-GWO and CatBoost-GWO also demonstrated improvements, scoring up to 89 %. GWO outperformed other optimization methods, delivering superior accuracy with fewer control parameters. Feature importance analysis highlighted Link Length and AADT/Lane.mile as critical predictors. This research enhances travel time reliability prediction, providing insights for transportation planning and management. Future work includes exploring multi-objective optimization and integrating additional features to refine model accuracy further.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"21 ","pages":"Article 100709"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper applies machine learning models to predict travel time reliability in transportation networks, using XGBoost, LightGBM, and CatBoost optimized with seven metaheuristic algorithms. The models were fine-tuned with a four-year dataset (2014–2017) covering 59 interstate sections in Virginia. Key features Link Length, AADT/mile/lane, Total Rate, and PRCP/1000 were identified as influential factors for travel time index prediction. Results revealed that XGBoost optimized with Grey Wolf Optimizer (GWO) achieved the highest accuracy at 92 %, surpassing the base model. LightGBM-GWO and CatBoost-GWO also demonstrated improvements, scoring up to 89 %. GWO outperformed other optimization methods, delivering superior accuracy with fewer control parameters. Feature importance analysis highlighted Link Length and AADT/Lane.mile as critical predictors. This research enhances travel time reliability prediction, providing insights for transportation planning and management. Future work includes exploring multi-objective optimization and integrating additional features to refine model accuracy further.
使用XAI优化旅行时间可靠性:使用机器学习和元启发式的弗吉尼亚州州际网络案例
本文应用机器学习模型来预测交通网络的旅行时间可靠性,使用XGBoost, LightGBM和CatBoost优化了七种元启发式算法。这些模型是用覆盖弗吉尼亚州59个州际公路路段的四年数据集(2014-2017年)进行微调的。道路长度、AADT/mile/lane、总速率和PRCP/1000是影响出行时间指数预测的主要因素。结果表明,使用灰狼优化器(GWO)优化的XGBoost达到了92%的最高准确率,超过了基本模型。LightGBM-GWO和CatBoost-GWO也表现出改进,得分高达89%。GWO优于其他优化方法,以更少的控制参数提供更高的精度。特征重要性分析强调了链路长度和AADT/车道英里作为关键预测因素。该研究增强了出行时间可靠性预测,为交通规划和管理提供了参考。未来的工作包括探索多目标优化和集成额外的特征,以进一步提高模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信