Hale Hapoglu , Egemen Ander Balas , Semin Altuntaş
{"title":"Artificial neural network discrete-time biomass controller for a continuous stirred tank reactor","authors":"Hale Hapoglu , Egemen Ander Balas , Semin Altuntaş","doi":"10.1016/j.jocs.2025.102688","DOIUrl":null,"url":null,"abstract":"<div><div>The employment of stirred tank reactors in the field of treatment technology is well-established. In this regard, a bioreactor model is commonly utilized for conducting simulations, identifying parameters, and developing control applications. Control of biomass concentration is independent of scale through manipulation of the dilution rate. To enable discrete-time control, an equivalent model incorporating a zero-order hold element and a 0.1-h sampling time has been formulated for controlling biomass concentration. In this study, the various well-known controllers performed effectively to track set points. Further, to mitigate the effects of load disturbances, the generalized predictive controller, the proportional integral derivative controller, and the controllers designed based on pole placement have been employed to obtain process control responses. The performance of these controllers has been evaluated through a weighted aggregate sum product assessment technique that employs an analytical hierarchy process. Due to the significant nonlinearity present in the closed loop bioprocess with substrate inhibition, the feedforward artificial neural network controller is trained using a closed-loop dataset, and its performances are compared with the conventional controllers. The controller has demonstrated its ability to manage realistic feed fluctuations without risking upset to the culture. The biomass concentration showed only minor deviations, settling swiftly back to the desired value by smoothly adjusting the dilution rate. This controller with tansig and purelin functions overcomes nonlinearities and time delays better than conventional controllers. The results suggest that the artificial neural network controller offers the desired simplicity and effectiveness for industrial applications.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"91 ","pages":"Article 102688"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001656","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The employment of stirred tank reactors in the field of treatment technology is well-established. In this regard, a bioreactor model is commonly utilized for conducting simulations, identifying parameters, and developing control applications. Control of biomass concentration is independent of scale through manipulation of the dilution rate. To enable discrete-time control, an equivalent model incorporating a zero-order hold element and a 0.1-h sampling time has been formulated for controlling biomass concentration. In this study, the various well-known controllers performed effectively to track set points. Further, to mitigate the effects of load disturbances, the generalized predictive controller, the proportional integral derivative controller, and the controllers designed based on pole placement have been employed to obtain process control responses. The performance of these controllers has been evaluated through a weighted aggregate sum product assessment technique that employs an analytical hierarchy process. Due to the significant nonlinearity present in the closed loop bioprocess with substrate inhibition, the feedforward artificial neural network controller is trained using a closed-loop dataset, and its performances are compared with the conventional controllers. The controller has demonstrated its ability to manage realistic feed fluctuations without risking upset to the culture. The biomass concentration showed only minor deviations, settling swiftly back to the desired value by smoothly adjusting the dilution rate. This controller with tansig and purelin functions overcomes nonlinearities and time delays better than conventional controllers. The results suggest that the artificial neural network controller offers the desired simplicity and effectiveness for industrial applications.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).