The role of face regions in remote photoplethysmography for contactless heart rate monitoring

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Maksym Bondarenko, Carlo Menon, Mohamed Elgendi
{"title":"The role of face regions in remote photoplethysmography for contactless heart rate monitoring","authors":"Maksym Bondarenko, Carlo Menon, Mohamed Elgendi","doi":"10.1038/s41746-025-01814-9","DOIUrl":null,"url":null,"abstract":"<p>Heart rate (HR) estimation is crucial for early cardiovascular diagnosis, continuous monitoring, and various health applications. While electrocardiography (ECG) remains the gold standard, its discomfort and impracticality for continuous use have spurred the development of non-contact methods like remote photoplethysmography (rPPG). This systematic review (PROSPERO: CRD 42024592157) examines 70 studies to assess the impact of Region of Interest (ROI) selection on HR estimation accuracy. Most methods (36.8%) use the holistic face, while forehead and cheek areas (24.5% and 21.7%) show superior accuracy. Machine learning-based approaches outperform traditional methods under motion artifacts and poor lighting, achieving Mean Absolute Error and Root Mean Square Error below 1.0 for some datasets. Combining multiple patches improves performance, though increasing ROIs beyond 60 patches results in diminishing returns and higher computational complexity. These findings highlight the significance of ROI optimization for robust rPPG-based HR estimation.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"21 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01814-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Heart rate (HR) estimation is crucial for early cardiovascular diagnosis, continuous monitoring, and various health applications. While electrocardiography (ECG) remains the gold standard, its discomfort and impracticality for continuous use have spurred the development of non-contact methods like remote photoplethysmography (rPPG). This systematic review (PROSPERO: CRD 42024592157) examines 70 studies to assess the impact of Region of Interest (ROI) selection on HR estimation accuracy. Most methods (36.8%) use the holistic face, while forehead and cheek areas (24.5% and 21.7%) show superior accuracy. Machine learning-based approaches outperform traditional methods under motion artifacts and poor lighting, achieving Mean Absolute Error and Root Mean Square Error below 1.0 for some datasets. Combining multiple patches improves performance, though increasing ROIs beyond 60 patches results in diminishing returns and higher computational complexity. These findings highlight the significance of ROI optimization for robust rPPG-based HR estimation.

Abstract Image

面部区域在非接触式心率监测的远程光电容积脉搏图中的作用
心率(HR)估算对于早期心血管诊断、连续监测和各种健康应用至关重要。虽然心电图(ECG)仍然是金标准,但其不舒适和不实用的连续使用刺激了非接触方法的发展,如远程光电容积脉搏波描记(rPPG)。本系统综述(PROSPERO: CRD 42024592157)检查了70项研究,以评估感兴趣区域(ROI)选择对人力资源估计准确性的影响。大多数方法(36.8%)使用整体面部,而前额和脸颊区域(24.5%和21.7%)显示出更高的准确性。基于机器学习的方法在运动伪影和光线不足的情况下优于传统方法,某些数据集的平均绝对误差和均方根误差低于1.0。结合多个补丁可以提高性能,尽管超过60个补丁的roi增加会导致收益递减和更高的计算复杂性。这些发现突出了ROI优化对于稳健的基于rppg的人力资源估计的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信