Leveraging Swin Transformer for enhanced diagnosis of Alzheimer's disease using multi-shell diffusion MRI.

ArXiv Pub Date : 2025-07-14
Quentin Dessain, Nicolas Delinte, Bernard Hanseeuw, Laurence Dricot, Benoît Macq
{"title":"Leveraging Swin Transformer for enhanced diagnosis of Alzheimer's disease using multi-shell diffusion MRI.","authors":"Quentin Dessain, Nicolas Delinte, Bernard Hanseeuw, Laurence Dricot, Benoît Macq","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to support early diagnosis of Alzheimer's disease and detection of amyloid accumulation by leveraging the microstructural information available in multi-shell diffusion MRI (dMRI) data, using a vision transformer-based deep learning framework.</p><p><strong>Methods: </strong>We present a classification pipeline that employs the Swin Transformer, a hierarchical vision transformer model, on multi-shell dMRI data for the classification of Alzheimer's disease and amyloid presence. Key metrics from DTI and NODDI were extracted and projected onto 2D planes to enable transfer learning with ImageNet-pretrained models. To efficiently adapt the transformer to limited labeled neuroimaging data, we integrated Low-Rank Adaptation. We assessed the framework on diagnostic group prediction (cognitively normal, mild cognitive impairment, Alzheimer's disease dementia) and amyloid status classification.</p><p><strong>Results: </strong>The framework achieved competitive classification results within the scope of multi-shell dMRI-based features, with the best balanced accuracy of 95.2% for distinguishing cognitively normal individuals from those with Alzheimer's disease dementia using NODDI metrics. For amyloid detection, it reached 77.2% balanced accuracy in distinguishing amyloid-positive mild cognitive impairment/Alzheimer's disease dementia subjects from amyloid-negative cognitively normal subjects, and 67.9% for identifying amyloid-positive individuals among cognitively normal subjects. Grad-CAM-based explainability analysis identified clinically relevant brain regions, including the parahippocampal gyrus and hippocampus, as key contributors to model predictions.</p><p><strong>Conclusion: </strong>This study demonstrates the promise of diffusion MRI and transformer-based architectures for early detection of Alzheimer's disease and amyloid pathology, supporting biomarker-driven diagnostics in data-limited biomedical settings.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aims to support early diagnosis of Alzheimer's disease and detection of amyloid accumulation by leveraging the microstructural information available in multi-shell diffusion MRI (dMRI) data, using a vision transformer-based deep learning framework.

Methods: We present a classification pipeline that employs the Swin Transformer, a hierarchical vision transformer model, on multi-shell dMRI data for the classification of Alzheimer's disease and amyloid presence. Key metrics from DTI and NODDI were extracted and projected onto 2D planes to enable transfer learning with ImageNet-pretrained models. To efficiently adapt the transformer to limited labeled neuroimaging data, we integrated Low-Rank Adaptation. We assessed the framework on diagnostic group prediction (cognitively normal, mild cognitive impairment, Alzheimer's disease dementia) and amyloid status classification.

Results: The framework achieved competitive classification results within the scope of multi-shell dMRI-based features, with the best balanced accuracy of 95.2% for distinguishing cognitively normal individuals from those with Alzheimer's disease dementia using NODDI metrics. For amyloid detection, it reached 77.2% balanced accuracy in distinguishing amyloid-positive mild cognitive impairment/Alzheimer's disease dementia subjects from amyloid-negative cognitively normal subjects, and 67.9% for identifying amyloid-positive individuals among cognitively normal subjects. Grad-CAM-based explainability analysis identified clinically relevant brain regions, including the parahippocampal gyrus and hippocampus, as key contributors to model predictions.

Conclusion: This study demonstrates the promise of diffusion MRI and transformer-based architectures for early detection of Alzheimer's disease and amyloid pathology, supporting biomarker-driven diagnostics in data-limited biomedical settings.

利用Swin变压器增强阿尔茨海默病的多壳扩散MRI诊断。
目的:本研究旨在利用基于视觉转换器的深度学习框架,利用多壳扩散MRI (dMRI)数据中的微结构信息,支持阿尔茨海默病的早期诊断和淀粉样蛋白积累的检测。方法:我们提出了一个分类管道,该管道采用Swin变压器,一种分层视觉变压器模型,对多壳dMRI数据进行阿尔茨海默病和淀粉样蛋白存在的分类。提取DTI和NODDI的关键指标并将其投影到2D平面上,以实现与imagenet预训练模型的迁移学习。为了有效地使变压器适应有限的标记神经成像数据,我们集成了低秩适应。我们评估了诊断组预测框架(认知正常、轻度认知障碍、阿尔茨海默病痴呆)和淀粉样蛋白状态分类。结果:该框架在基于多壳dmri的特征范围内取得了竞争性分类结果,使用NODDI指标区分认知正常个体与阿尔茨海默病痴呆患者的最佳平衡准确率为95.2%。对于淀粉样蛋白检测,区分淀粉样蛋白阳性的轻度认知障碍/阿尔茨海默病痴呆受试者与淀粉样蛋白阴性的认知正常受试者的平衡准确率为77.2%,在认知正常受试者中识别淀粉样蛋白阳性个体的平衡准确率为67.9%。基于grad - cam的可解释性分析确定了临床相关的大脑区域,包括海马旁回和海马体,是模型预测的关键贡献者。结论:本研究证明了弥散MRI和基于变压器的结构在早期检测阿尔茨海默病和淀粉样蛋白病理方面的前景,支持数据有限的生物医学环境中生物标志物驱动的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信