Arthur J Funnell, Panayiotis Petousis, Fabrice Harel-Canada, Ruby Romero, Alex A T Bui, Adam Koncsol, Hritika Chaturvedi, Chelsea Shover, David Goodman-Meza
{"title":"Improving Drug Identification in Overdose Death Surveillance using Large Language Models.","authors":"Arthur J Funnell, Panayiotis Petousis, Fabrice Harel-Canada, Ruby Romero, Alex A T Bui, Adam Koncsol, Hritika Chaturvedi, Chelsea Shover, David Goodman-Meza","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The rising rate of drug-related deaths in the United States, largely driven by fentanyl, requires timely and accurate surveillance. However, critical overdose data are often buried in free-text coroner reports, leading to delays and information loss when coded into ICD (International Classification of Disease)-10 classifications. Natural language processing (NLP) models may automate and enhance overdose surveillance, but prior applications have been limited. A dataset of 35,433 death records from multiple U.S. jurisdictions in 2020 was used for model training and internal testing. External validation was conducted using a novel separate dataset of 3,335 records from 2023-2024. Multiple NLP approaches were evaluated for classifying specific drug involvement from unstructured death certificate text. These included traditional single- and multi-label classifiers, as well as fine-tuned encoder-only language models such as Bidirectional Encoder Representations from Transformers (BERT) and BioClinicalBERT, and contemporary decoder-only large language models such as Qwen 3 and Llama 3. Model performance was assessed using macro-averaged F1 scores, and 95% confidence intervals were calculated to quantify uncertainty. Fine-tuned BioClinicalBERT models achieved near-perfect performance, with macro F1 scores >=0.998 on the internal test set. External validation confirmed robustness (macro F1=0.966), outperforming conventional machine learning, general-domain BERT models, and various decoder-only large language models. NLP models, particularly fine-tuned clinical variants like BioClinicalBERT, offer a highly accurate and scalable solution for overdose death classification from free-text reports. These methods can significantly accelerate surveillance workflows, overcoming the limitations of manual ICD-10 coding and supporting near real-time detection of emerging substance use trends.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rising rate of drug-related deaths in the United States, largely driven by fentanyl, requires timely and accurate surveillance. However, critical overdose data are often buried in free-text coroner reports, leading to delays and information loss when coded into ICD (International Classification of Disease)-10 classifications. Natural language processing (NLP) models may automate and enhance overdose surveillance, but prior applications have been limited. A dataset of 35,433 death records from multiple U.S. jurisdictions in 2020 was used for model training and internal testing. External validation was conducted using a novel separate dataset of 3,335 records from 2023-2024. Multiple NLP approaches were evaluated for classifying specific drug involvement from unstructured death certificate text. These included traditional single- and multi-label classifiers, as well as fine-tuned encoder-only language models such as Bidirectional Encoder Representations from Transformers (BERT) and BioClinicalBERT, and contemporary decoder-only large language models such as Qwen 3 and Llama 3. Model performance was assessed using macro-averaged F1 scores, and 95% confidence intervals were calculated to quantify uncertainty. Fine-tuned BioClinicalBERT models achieved near-perfect performance, with macro F1 scores >=0.998 on the internal test set. External validation confirmed robustness (macro F1=0.966), outperforming conventional machine learning, general-domain BERT models, and various decoder-only large language models. NLP models, particularly fine-tuned clinical variants like BioClinicalBERT, offer a highly accurate and scalable solution for overdose death classification from free-text reports. These methods can significantly accelerate surveillance workflows, overcoming the limitations of manual ICD-10 coding and supporting near real-time detection of emerging substance use trends.