Uğur Kahya, Vasyl Lukiyanchuk, Ielizaveta Gorodetska, Matthias M Weigel, Ayşe Sedef Köseer, Berke Alkan, Dragana Savic, Annett Linge, Steffen Löck, Mirko Peitzsch, Ira-Ida Skvortsova, Mechthild Krause, Anna Dubrovska
{"title":"Disruption of glutamine transport uncouples the NUPR1 stress-adaptation program and induces prostate cancer radiosensitivity.","authors":"Uğur Kahya, Vasyl Lukiyanchuk, Ielizaveta Gorodetska, Matthias M Weigel, Ayşe Sedef Köseer, Berke Alkan, Dragana Savic, Annett Linge, Steffen Löck, Mirko Peitzsch, Ira-Ida Skvortsova, Mechthild Krause, Anna Dubrovska","doi":"10.1186/s12964-025-02344-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolic and stress response adaptations in prostate cancer (PCa) mediate tumor resistance to radiation therapy (RT). Our study investigated the roles of glutamine (Gln) transporters SLC1A5, SLC7A5, and SLC38A1 in regulating NUPR1-mediated stress response, PCa cell survival, metabolic reprogramming, and response to RT.</p><p><strong>Methods: </strong>The radiosensitizing potential of GLS inhibition with CB-839 was analyzed in prostate cancer xenograft models. The level of gene expression was analyzed by RNA sequencing and RT-qPCR in the established cell lines or patient-derived tumor and adjacent non-cancerous tissues. Phosphoproteomic analysis was employed to identify the underlying signaling pathways. The publicly available PCa patient datasets, and a dataset for the patients treated with RT were analyzed by SUMO software. The key parameters of mitochondrial functions were measured by Seahorse analysis. Analysis of the general oxidative stress level and mitochondrial superoxide detection were conducted using flow cytometry. γH2A.X foci analysis was used to assess the DNA double strand break. Relative cell sensitivity to RT was evaluated by radiobiological clonogenic assays. Aldefluor assay and sphere-forming analysis were used to determine cancer stem cell (CSC) phenotype.</p><p><strong>Results: </strong>A siRNA-mediated knockdown of Gln transporters SLC1A5, SLC7A5, and SLC38A1 resulted in significant radiosensitization of PCa cells. Consistently, the first-in-clinic glutaminase (GLS) inhibitor CB-839, combined with RT, demonstrated a synergistic effect with radiotherapy in vivo, significantly delaying tumor growth. Inhibition of Gln metabolism or knockdown of Gln transporters SLC1A5, SLC7A5, or SLC38A1 induces expression of NUPR1, a stress response transcriptional regulator, but simultaneously uncouples the NUPR1-driven metabolic stress-adaptation program. Similarly to the effect from NUPR1 knockdown, depletion of these Gln transporters led to reduced cell viability, accumulation of mitochondrial ROS, and increased PCa radiosensitivity. This effect is more pronounced in PCa cells with high dependency on OXPHOS for energy production.</p><p><strong>Conclusions: </strong>Our work underscores the role of Gln transporters and the NUPR1-mediated stress response in PCa cell survival, oxidative stress, mitochondrial functions, and radioresistance. Our findings provide a potential therapeutic in vivo strategy to enhance the efficacy of RT and suggest a potential synergism between the depletion of Gln transporters or NUPR1 and OXPHOS inhibition.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"351"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291318/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02344-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Metabolic and stress response adaptations in prostate cancer (PCa) mediate tumor resistance to radiation therapy (RT). Our study investigated the roles of glutamine (Gln) transporters SLC1A5, SLC7A5, and SLC38A1 in regulating NUPR1-mediated stress response, PCa cell survival, metabolic reprogramming, and response to RT.
Methods: The radiosensitizing potential of GLS inhibition with CB-839 was analyzed in prostate cancer xenograft models. The level of gene expression was analyzed by RNA sequencing and RT-qPCR in the established cell lines or patient-derived tumor and adjacent non-cancerous tissues. Phosphoproteomic analysis was employed to identify the underlying signaling pathways. The publicly available PCa patient datasets, and a dataset for the patients treated with RT were analyzed by SUMO software. The key parameters of mitochondrial functions were measured by Seahorse analysis. Analysis of the general oxidative stress level and mitochondrial superoxide detection were conducted using flow cytometry. γH2A.X foci analysis was used to assess the DNA double strand break. Relative cell sensitivity to RT was evaluated by radiobiological clonogenic assays. Aldefluor assay and sphere-forming analysis were used to determine cancer stem cell (CSC) phenotype.
Results: A siRNA-mediated knockdown of Gln transporters SLC1A5, SLC7A5, and SLC38A1 resulted in significant radiosensitization of PCa cells. Consistently, the first-in-clinic glutaminase (GLS) inhibitor CB-839, combined with RT, demonstrated a synergistic effect with radiotherapy in vivo, significantly delaying tumor growth. Inhibition of Gln metabolism or knockdown of Gln transporters SLC1A5, SLC7A5, or SLC38A1 induces expression of NUPR1, a stress response transcriptional regulator, but simultaneously uncouples the NUPR1-driven metabolic stress-adaptation program. Similarly to the effect from NUPR1 knockdown, depletion of these Gln transporters led to reduced cell viability, accumulation of mitochondrial ROS, and increased PCa radiosensitivity. This effect is more pronounced in PCa cells with high dependency on OXPHOS for energy production.
Conclusions: Our work underscores the role of Gln transporters and the NUPR1-mediated stress response in PCa cell survival, oxidative stress, mitochondrial functions, and radioresistance. Our findings provide a potential therapeutic in vivo strategy to enhance the efficacy of RT and suggest a potential synergism between the depletion of Gln transporters or NUPR1 and OXPHOS inhibition.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.