Effects of Trapezius Muscle Self-Stretching on Muscle Stiffness and Choroidal Circulatory Dynamics: An Evaluation Using Ultrasound Strain Elastography and Laser Speckle Flowgraphy.

IF 2.2 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Miki Yoshimura, Takanori Taniguchi, Takeshi Yoshitomi, Yuki Hashimoto
{"title":"Effects of Trapezius Muscle Self-Stretching on Muscle Stiffness and Choroidal Circulatory Dynamics: An Evaluation Using Ultrasound Strain Elastography and Laser Speckle Flowgraphy.","authors":"Miki Yoshimura, Takanori Taniguchi, Takeshi Yoshitomi, Yuki Hashimoto","doi":"10.3390/tomography11070073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>The relationship between upper trapezius muscle stiffness and choroidal circulatory dynamics remains unclear. This study aimed to examine changes in upper trapezius muscle stiffness and choroidal circulatory dynamics before and after trapezius muscle self-stretching.</p><p><strong>Methods: </strong>Eighteen healthy adults in their 20s (median age ± standard error: 21.0 ± 4.9 years) and eight healthy adults in their 40s (age: 43.0 ± 15.2 years) were included. Intraocular pressure (IOP); systolic, diastolic, and mean blood pressure (BP); heart rate (HR); ocular perfusion pressure (OPP); and salivary alpha-amylase (sAA) activity-as an indicator of autonomic nervous system function-were measured at baseline and after trapezius muscle self-stretching. Upper trapezius muscle stiffness was assessed using ultrasound strain elastography, whereas choroidal circulation was evaluated using laser speckle flowgraphy to determine the mean blur rate (MBR), a relative measure of macular blood flow velocity.</p><p><strong>Results: </strong>Significant reductions in systolic and mean BP; OPP; sAA activity; and MBR were observed after trapezius muscle self-stretching in both groups; however, no significant changes were found in IOP and HR. A significant decrease in upper trapezius muscle stiffness was observed after self-stretching only in the 20-year-old group.</p><p><strong>Conclusions: </strong>In healthy adults in their 20s and 40s, trapezius muscle self-stretching may enhance parasympathetic nervous system activity, resulting in decreased systemic and choroidal circulatory parameters. However, the reduction in muscle stiffness observed only in younger participants suggests that short-term self-stretching may be less effective in reducing trapezius muscle stiffness with advancing age.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 7","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299248/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11070073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objectives: The relationship between upper trapezius muscle stiffness and choroidal circulatory dynamics remains unclear. This study aimed to examine changes in upper trapezius muscle stiffness and choroidal circulatory dynamics before and after trapezius muscle self-stretching.

Methods: Eighteen healthy adults in their 20s (median age ± standard error: 21.0 ± 4.9 years) and eight healthy adults in their 40s (age: 43.0 ± 15.2 years) were included. Intraocular pressure (IOP); systolic, diastolic, and mean blood pressure (BP); heart rate (HR); ocular perfusion pressure (OPP); and salivary alpha-amylase (sAA) activity-as an indicator of autonomic nervous system function-were measured at baseline and after trapezius muscle self-stretching. Upper trapezius muscle stiffness was assessed using ultrasound strain elastography, whereas choroidal circulation was evaluated using laser speckle flowgraphy to determine the mean blur rate (MBR), a relative measure of macular blood flow velocity.

Results: Significant reductions in systolic and mean BP; OPP; sAA activity; and MBR were observed after trapezius muscle self-stretching in both groups; however, no significant changes were found in IOP and HR. A significant decrease in upper trapezius muscle stiffness was observed after self-stretching only in the 20-year-old group.

Conclusions: In healthy adults in their 20s and 40s, trapezius muscle self-stretching may enhance parasympathetic nervous system activity, resulting in decreased systemic and choroidal circulatory parameters. However, the reduction in muscle stiffness observed only in younger participants suggests that short-term self-stretching may be less effective in reducing trapezius muscle stiffness with advancing age.

Abstract Image

Abstract Image

Abstract Image

斜方肌自拉伸对肌肉僵硬度和脉络膜循环动力学的影响:超声应变弹性成像和激光散斑流成像的评价。
背景/目的:上斜方肌僵硬度与脉络膜循环动力学之间的关系尚不清楚。本研究旨在探讨斜方肌自我拉伸前后上斜方肌僵硬度和脉络膜循环动力学的变化。方法:选取18名20多岁健康成人(中位年龄±标准误差:21.0±4.9岁)和8名40多岁健康成人(年龄:43.0±15.2岁)。眼压(IOP);收缩压、舒张压和平均血压(BP);心率(HR);眼灌注压(OPP);在基线和斜方肌自我拉伸后测量唾液α -淀粉酶(sAA)活性-作为自主神经系统功能的指标。使用超声应变弹性成像评估上斜方肌僵硬度,而使用激光散斑血流成像评估脉络膜循环以确定平均模糊率(MBR),这是黄斑血流速度的相对度量。结果:收缩压和平均血压显著降低;OPP;南非航空公司活动;观察两组斜方肌自拉伸后MBR的变化;然而,IOP和HR没有明显变化。仅在20岁组中观察到自我拉伸后上斜方肌僵硬度显著降低。结论:在20 - 40岁的健康成人中,斜方肌自我拉伸可增强副交感神经系统的活性,导致全身和脉络膜循环参数降低。然而,仅在年轻参与者中观察到的肌肉僵硬的减少表明,随着年龄的增长,短期自我拉伸在减少斜方肌僵硬方面可能效果不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tomography
Tomography Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍: TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine. Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians. Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信